1
|
Schneider K, Barreiro-Hurle J, Vossen J, Schouten HJ, Kessel G, Andreasson E, Kieu NP, Strassemeyer J, Hristov J, Rodriguez-Cerezo E. Insights on cisgenic plants with durable disease resistance under the European Green Deal. Trends Biotechnol 2023; 41:1027-1040. [PMID: 37419837 DOI: 10.1016/j.tibtech.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 07/09/2023]
Abstract
Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.
Collapse
Affiliation(s)
- Kevin Schneider
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain.
| | - Jesus Barreiro-Hurle
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain
| | - Jack Vossen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700, AJ, Wageningen, The Netherlands
| | - Henk J Schouten
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6700, AJ, Wageningen, The Netherlands
| | - Geert Kessel
- Field Crops, Wageningen University & Research, Edelhertweg 1, 8219, PH, Lelystad, The Netherlands
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Jörn Strassemeyer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, 14532, Kleinmachnow, Germany
| | - Jordan Hristov
- Joint Research Centre, European Commission, Calle Inca Garcilaso 3, 41092, Sevilla, Spain
| | | |
Collapse
|
2
|
He GQ, Huang XX, Pei MS, Jin HY, Cheng YZ, Wei TL, Liu HN, Yu YH, Guo DL. Dissection of the Pearl of Csaba pedigree identifies key genomic segments related to early ripening in grape. PLANT PHYSIOLOGY 2023; 191:1153-1166. [PMID: 36440478 PMCID: PMC9922404 DOI: 10.1093/plphys/kiac539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.
Collapse
Affiliation(s)
- Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Xi-Xi Huang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Hui-Ying Jin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
3
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
4
|
Lan X, Wang X, Tao Q, Zhang H, Li J, Meng Y, Shan W. Activation of the VQ Motif-Containing Protein Gene VQ28 Compromised Nonhost Resistance of Arabidopsis thaliana to Phytophthora Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070858. [PMID: 35406838 PMCID: PMC9002740 DOI: 10.3390/plants11070858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
Nonhost resistance refers to resistance of a plant species to all genetic variants of a non-adapted pathogen. Such resistance has the potential to become broad-spectrum and durable crop disease resistance. We previously employed Arabidopsis thaliana and a forward genetics approach to identify plant mutants susceptible to the nonhost pathogen Phytophthora sojae, which resulted in identification of the T-DNA insertion mutant esp1 (enhanced susceptibility to Phytophthora). In this study, we report the identification of VQ motif-containing protein 28 (VQ28), whose expression was highly up-regulated in the mutant esp1. Stable transgenic A. thaliana plants constitutively overexpressing VQ28 compromised nonhost resistance (NHR) against P. sojae and P. infestans, and supported increased infection of P. parasitica. Transcriptomic analysis showed that overexpression of VQ28 resulted in six differentially expressed genes (DEGs) that are involved in the response to abscisic acid (ABA). High performance liquid chromatography-mass spectrometry (HPLC-MS) detection showed that the contents of endogenous ABA, salicylic acid (SA), and jasmonate (JA) were enriched in VQ28 overexpression lines. These findings suggest that overexpression of VQ28 may lead to an imbalance in plant hormone homeostasis. Furthermore, transient overexpression of VQ28 in Nicotiana benthamiana rendered plants more susceptible to Phytophthora pathogens. Deletion mutant analysis showed that the C-terminus and VQ-motif were essential for plant susceptibility. Taken together, our results suggest that VQ28 negatively regulates plant NHR to Phytophthora pathogens.
Collapse
Affiliation(s)
- Xingjie Lan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Quandan Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Haotian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China; (X.L.); (X.W.); (Q.T.); (H.Z.); (J.L.); (Y.M.)
- College of Agronomy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
5
|
Parween D, Sahu BB. An Arabidopsis nonhost resistance gene, IMPORTIN ALPHA 2 provides immunity against rice sheath blight pathogen, Rhizoctonia solani. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100109. [PMID: 35243446 PMCID: PMC8856995 DOI: 10.1016/j.crmicr.2022.100109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/23/2022] Open
Abstract
Rice sheath blight is caused by necrotrophic dreadful fungus Rhizoctonia solani. Forward genetics tools identified RSS1 (IMPA2; IMPORTIN ALPHA 2) as a NHR gene. Mutation in RSS1 at P65S in first exon compromise the immunity to R. solani. rss1 shows enhanced cell death, ROS, callose deposition and developmental defect. RSS1 activates early salicylic acid mediated defense response against R. solani.
There is neither resistant rice cultivar nor any control measure against Rhizoctonia solani AG-1 IA (RS), causal of sheath blight and a major threat to global rice production. Rice is a host and Arabidopsis is a nonhost with underlying nonhost resistance (NHR) gene which is largely untested. Using approaches of forward genetics and tools, cytology, and molecular biology, we identified homozygous mutants in Arabidopsis, mapped the NHR gene, and functionally characterized it in response to RS. Rss1 was mapped on Ch 4 between JAERI18 and Ch4_9.18 (844.6 Kb) and identified IMPORTIN ALPHA 2 as the candidate RSS1 gene. We found that breach of immunity in rss1 by RS activates defense responses whereas photosynthetic pigment biosynthesis and developmental processes are negatively regulated. In addition, a gradual decrease in PR1 by 3 dpi revealed that RSS1 positively regulated early SA-mediated resistance. Whereas increased expression of PDF1.2 by 3 dpi supported switching to necrotrophy, SA-mediated defense in Col-0 leading to immune response. Enhanced expression of ATG8a in rss1 supported autophagic cell death. IMPA2, IMPA1, and RAN1 function together to provide NHR against RS. These findings demonstrate that IMPA2 provides NHR against RS in Col-0 that evoke SA-mediated early immunity with boulevard for potential biotechnological application.
Collapse
|
6
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|
7
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|