1
|
Kanda Y, Shinya T, Wari D, Hojo Y, Fujiwara Y, Tsuchiya W, Fujimoto Z, Thomma BPHJ, Nishizawa Y, Kamakura T, Galis I, Mori M. Chitin-signaling-dependent responses to insect oral secretions in rice cells propose the involvement of chitooligosaccharides in plant defense against herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39579336 DOI: 10.1111/tpj.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Plants recognize molecules related to a variety of biotic stresses through pattern recognition receptors to activate plant immunity. In the interactions between plants and chewing herbivores, such as lepidopteran larvae, oral secretions (OS) are deposited on wounded sites, which results in the elicitation of plant immune responses. The widely conserved receptor-like kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) has been broadly associated with the recognition of microbial components, such as fungal chitin, but its relevance to herbivory remained unclear. In this study, we used receptor-knockout rice (Oryza sativa) and larvae of the lepidopteran pest Mythimna loreyi to demonstrate that the induction of immune responses triggered by larval OS in rice cells largely depends on CERK1 (OsCERK1). CHITIN ELICITOR-BINDING PROTEIN (CEBiP), an OsCERK1-interacting receptor-like protein that was proposed as the main chitin receptor, also contributed to the responses of rice cells to OS collected from three different lepidopteran species. Furthermore, CEBiP knockout rice seedlings showed lower OS-triggered accumulation of jasmonic acid. These results strongly suggest that the OsCERK1 and CEBiP recognize a particular OS component in chewing lepidopteran herbivores, and point toward the presence of chitooligosaccharides in the OS. Targeted perturbation to chitin recognition, through the use of fungal effector proteins, confirmed the presence of chitooligosaccharides in the OS. Treatments of wounds on rice plants with chitooligosaccharides enhanced a set of immune responses, leading to resistance against an herbivorous insect. Our data show that rice recognizes chitooligosaccharides during larval herbivory to activate resistance, and identifies chitin as a novel herbivore-associated molecular pattern.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - David Wari
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuka Fujiwara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Wataru Tsuchiya
- Research Center for Advanced Analysis, NARO, Tsukuba, 305-8518, Japan
| | - Zui Fujimoto
- Research Center for Advanced Analysis, NARO, Tsukuba, 305-8518, Japan
| | - Bart P H J Thomma
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, 278-8510, Japan
| |
Collapse
|
2
|
Wang L, Erb M. Feeding Assay to Study the Effect of Phytocytokines on Direct and Indirect Defense in Maize. Methods Mol Biol 2024; 2731:133-142. [PMID: 38019431 DOI: 10.1007/978-1-0716-3511-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phytocytokines mediate defense against pests and pathogens. Many methods have been developed to study the physiological responses triggered by phytocytokines in dicot plants. Here, we describe a detailed peptide feeding protocol to study the effect of phytocytokines on direct and indirect anti-herbivore defense in maize. This method relies on peptide uptake by the excised maize seedling or leaves via the transpiration stream. The headspace volatiles from plant samples are then analyzed by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), or by gas chromatography-mass spectrometry (GC-MS). The samples can also be further processed to evaluate phytocytokine-induced defense gene expression or phytohormone production.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Han S, Shen Z, Gao Q, Jin N, Lou Y. Knocking Out OsRLK7-1 Impairs Rice Growth and Development but Enhances Its Resistance to Planthoppers. Int J Mol Sci 2023; 24:14569. [PMID: 37834016 PMCID: PMC10572756 DOI: 10.3390/ijms241914569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are an important subfamily of receptor-like kinases (RLKs) in plants that play key roles in sensing different biotic and abiotic stress. However, the role of LRR-RLKs in herbivore-induced plant defense remains largely elusive. Here, we found that the expression of a rice gene, OsRLK7-1, was induced by mechanical wounding, but was slightly suppressed by the infestation of gravid females of brown planthopper (BPH, Nilaparvata lugens) or white-backed planthopper (WBPH, Sogatella furcifera). Through targeted disruption of OsRLK7-1 (resulting in the ko-rlk lines), we observed an augmentation in transcript levels of BPH-induced OsMPK3, OsWRKY30, OsWRKY33, and OsWRKY45, alongside heightened levels of planthopper-induced jasmonic acid, JA-isoleucine, and abscisic acid in plant tissues. These dynamic changes further facilitated the biosynthesis of multiple phenolamides within the rice plants, culminating in an enhanced resistance to planthopper infestations under both lab and field conditions. In addition, knocking out OsRLK7-1 impaired plant growth and reproduction. These results suggest that OsRLK7-1 plays an important role in regulating rice growth, development, and rice-planthopper interactions.
Collapse
Affiliation(s)
- Shanjie Han
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifan Shen
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Jin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Wang L, Jäggi S, Cofer TM, Waterman JM, Walthert M, Glauser G, Erb M. Immature leaves are the dominant volatile-sensing organs of maize. Curr Biol 2023; 33:3679-3689.e3. [PMID: 37597519 DOI: 10.1016/j.cub.2023.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Plants perceive herbivory-induced volatiles and respond to them by upregulating their defenses. To date, the organs responsible for volatile perception remain poorly described. Here, we show that responsiveness to the herbivory-induced green leaf volatile (Z)-3-hexenyl acetate (HAC) in terms of volatile emission, transcriptional regulation, and jasmonate defense hormone activation is largely constrained to younger maize leaves. Older leaves are much less sensitive to HAC. In a given leaf, responsiveness to HAC is high at immature developmental stages and drops off rapidly during maturation. Responsiveness to the non-volatile elicitor ZmPep3 shows an opposite pattern, demonstrating that this form of hyposmia (i.e., decreased sense of smell) is not due to a general defect in jasmonate defense signaling in mature leaves. Neither stomatal conductance nor leaf cuticle composition explains the unresponsiveness of older leaves to HAC, suggesting perception mechanisms upstream of jasmonate signaling as driving factors. Finally, we show that hyposmia in older leaves is not restricted to HAC and extends to the full blend of herbivory-induced volatiles. In conclusion, our work identifies immature maize leaves as dominant stress volatile-sensing organs. The tight spatiotemporal control of volatile perception may facilitate within plant defense signaling to protect young leaves and may allow plants with complex architectures to explore the dynamic odor landscapes at the outer periphery of their shoots.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Simon Jäggi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Tristan M Cofer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Mario Walthert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Science, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
5
|
Yuan P, Borrego E, Park YS, Gorman Z, Huang PC, Tolley J, Christensen SA, Blanford J, Kilaru A, Meeley R, Koiwa H, Vidal S, Huffaker A, Schmelz E, Kolomiets MV. 9,10-KODA, an α-ketol produced by the tonoplast-localized 9-lipoxygenase ZmLOX5, plays a signaling role in maize defense against insect herbivory. MOLECULAR PLANT 2023; 16:1283-1303. [PMID: 37434355 DOI: 10.1016/j.molp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
13-Lipoxygenases (LOXs) initiate the synthesis of jasmonic acid (JA), the best-understood oxylipin hormone in herbivory defense. However, the roles of 9-LOX-derived oxylipins in insect resistance remain unclear. Here, we report a novel anti-herbivory mechanism mediated by a tonoplast-localized 9-LOX, ZmLOX5, and its linolenic acid-derived product, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA). Transposon-insertional disruption of ZmLOX5 resulted in the loss of resistance to insect herbivory. lox5 knockout mutants displayed greatly reduced wound-induced accumulation of multiple oxylipins and defense metabolites, including benzoxazinoids, abscisic acid (ABA), and JA-isoleucine (JA-Ile). However, exogenous JA-Ile failed to rescue insect defense in lox5 mutants, while applications of 1 μM 9,10-KODA or the JA precursor, 12-oxo-phytodienoic acid (12-OPDA), restored wild-type resistance levels. Metabolite profiling revealed that exogenous 9,10-KODA primed the plants for increased production of ABA and 12-OPDA, but not JA-Ile. While none of the 9-oxylipins were able to rescue JA-Ile induction, the lox5 mutant accumulated lower wound-induced levels of Ca2+, suggesting this as a potential explanation for lower wound-induced JA. Seedlings pretreated with 9,10-KODA exhibited rapid or more robust wound-induced defense gene expression. In addition, an artificial diet supplemented with 9,10-KODA arrested fall armyworm larvae growth. Finally, analysis of single and double lox5 and lox10 mutants showed that ZmLOX5 also contributed to insect defense by modulating ZmLOX10-mediated green leaf volatile signaling. Collectively, our study uncovered a previously unknown anti-herbivore defense and hormone-like signaling activity for a major 9-oxylipin α-ketol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Currently at Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Yong-Soon Park
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; Department of Plant Resources, Agriculture and Fisheries Life Science Research Institute, Kongju National University, Yesan, Chungnam 32439, South Korea
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shawn A Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37659, USA
| | - Robert Meeley
- Formerly at Corteva Agriscience, Johnston, IA 50131, USA
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Stefan Vidal
- Department of Crop Sciences, Agricultural Entomology, Georg-August-Universität, 37077 Göttingen, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92037, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA.
| |
Collapse
|
6
|
Saldivar EV, Ding Y, Poretsky E, Bird S, Block AK, Huffaker A, Schmelz EA. Maize Terpene Synthase 8 (ZmTPS8) Contributes to a Complex Blend of Fungal-Elicited Antibiotics. PLANTS (BASEL, SWITZERLAND) 2023; 12:1111. [PMID: 36903970 PMCID: PMC10005556 DOI: 10.3390/plants12051111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/β-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.
Collapse
Affiliation(s)
- Evan V. Saldivar
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford University, Palo Alto, CA 94305, USA
| | - Yezhang Ding
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elly Poretsky
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Skylar Bird
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Anna K. Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Alisa Huffaker
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| | - Eric A. Schmelz
- Department of Cell and Developmental Biology, University of California at San Diego, San Diego, CA 92093, USA
| |
Collapse
|
7
|
Volatile uptake, transport, perception, and signaling shape a plant's nose. Essays Biochem 2022; 66:695-702. [PMID: 36062590 PMCID: PMC9528081 DOI: 10.1042/ebc20210092] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
Herbivore-induced plant volatiles regulate defenses in undamaged neighboring plants. Understanding the mechanisms by which plant volatiles are taken up, perceived, and translated into canonical defense signaling pathways is an important frontier of knowledge. Volatiles can enter plants through stomata and the cuticle. They are likely perceived by membrane-associated receptors as well as intracellular receptors. The latter likely involves metabolization and transport across cell membranes by volatile transporters. Translation of volatiles into defense priming and induction typically involves mitogen-activated protein kinases (MAPKs), WRKY transcription factors, and jasmonates. We propose that the broad range of molecular processes involved in volatile signaling will likely result in substantial spatiotemporal and ontogenetic variation in plant responsiveness to volatiles, with important consequences for plant–environment interactions.
Collapse
|
8
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|