1
|
Kim SJ, Zemelis-Durfee S, Mckinley B, Sokoloski R, Aufdemberge W, Mullet J, Brandizzi F. Cell- and development-specific degradation controls the levels of mixed-linkage glucan in sorghum leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:360-374. [PMID: 37395650 DOI: 10.1111/tpj.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Mixed-linkage glucan (MLG) is a component of the cell wall (CW) of grasses and is composed of glucose monomers linked by β-1,3 and β-1,4 bonds. MLG is believed to have several biological functions, such as the mobilizable storage of carbohydrates and structural support of the CW. The extracellular levels of MLG are largely controlled by rates of synthesis mediated by cellulose synthase-like (CSL) enzymes, and turnover by lichenases. Economically important crops like sorghum accumulate MLG to variable levels during development. While in sorghum, like other grasses, there is one major MLG synthase (CSLF6), the identity of lichenases is yet unknown. To fill this gap, we identified three sorghum lichenases (SbLCH1-3) and characterized them in leaves in relation to the expression of SbCSLF6, and the abundance of MLG and starch. We established that SbLCH1-3 are secreted to the apoplast, consistent with a role of degrading MLG extracellularly. Furthermore, while SbCSLF6 expression was associated with cell development, the SbLCH genes exhibited distinct development-, cell-type-specific and diel-regulated expression. Therefore, our study identifies three functional sorghum MLG lichenases and highlights that MLG accumulation in sorghum leaves is likely controlled by the activity of lichenases that tune MLG levels, possibly to suit distinct cell and developmental needs in planta. These findings have important implications for improving the growth, yield, and composition of sorghum as a feedstock.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Brian Mckinley
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William Aufdemberge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - John Mullet
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77845, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
2
|
Francin-Allami M, Bouder A, Geairon A, Alvarado C, Le-Bot L, Daniel S, Shao M, Laudencia-Chingcuanco D, Vogel JP, Guillon F, Bonnin E, Saulnier L, Sibout R. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int J Mol Sci 2023; 24:ijms24076821. [PMID: 37047802 PMCID: PMC10095428 DOI: 10.3390/ijms24076821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
3
|
Wang S, Robertz S, Seven M, Kraemer F, Kuhn BM, Liu L, Lunde C, Pauly M, Ramírez V. A large-scale forward genetic screen for maize mutants with altered lignocellulosic properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1099009. [PMID: 36959947 PMCID: PMC10028098 DOI: 10.3389/fpls.2023.1099009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The development of efficient pipelines for the bioconversion of grass lignocellulosic feedstocks is challenging due to the limited understanding of the molecular mechanisms controlling the synthesis, deposition, and degradation of the varying polymers unique to grass cell walls. Here, we describe a large-scale forward genetic approach resulting in the identification of a collection of chemically mutagenized maize mutants with diverse alterations in their cell wall attributes such as crystalline cellulose content or hemicellulose composition. Saccharification yield, i.e. the amount of lignocellulosic glucose (Glc) released by means of enzymatic hydrolysis, is increased in two of the mutants and decreased in the remaining six. These mutants, termed candy-leaf (cal), show no obvious plant growth or developmental defects despite associated differences in their lignocellulosic composition. The identified cal mutants are a valuable tool not only to understand recalcitrance of grass lignocellulosics to enzymatic deconstruction but also to decipher grass-specific aspects of cell wall biology once the genetic basis, i.e. the location of the mutation, has been identified.
Collapse
Affiliation(s)
- Shaogan Wang
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Robertz
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Merve Seven
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Kraemer
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin M. Kuhn
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lifeng Liu
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - China Lunde
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology-Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
4
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|