1
|
Cun Z, Zhang JY, Hong J, Yang J, Gao LL, Hao B, Chen JW. Integrated metabolome and transcriptome analysis reveals the regulatory mechanism of low nitrogen-driven biosynthesis of saponins and flavonoids in Panax notoginseng. Gene 2024; 901:148163. [PMID: 38224922 DOI: 10.1016/j.gene.2024.148163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jie Hong
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Li-Lin Gao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Bing Hao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Xie B, Chen Y, Zhang Y, An X, Li X, Yang A, Kang G, Zhou J, Cheng C. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of apple dwarfing rootstock root morphogenesis under nitrogen and/or phosphorus deficient conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1120777. [PMID: 37404544 PMCID: PMC10315683 DOI: 10.3389/fpls.2023.1120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/16/2023] [Indexed: 07/06/2023]
Abstract
Nitrogen (N) and phosphorus (P) are essential phytomacronutrients, and deficiencies in these two elements limit growth and yield in apple (Malus domestica Borkh.). The rootstock plays a key role in the nutrient uptake and environmental adaptation of apple. The objective of this study was to investigate the effects of N and/or P deficiency on hydroponically-grown dwarfing rootstock 'M9-T337' seedlings, particularly the roots, by performing an integrated physiological, transcriptomics-, and metabolomics-based analyses. Compared to N and P sufficiency, N and/or P deficiency inhibited aboveground growth, increased the partitioning of total N and total P in roots, enhanced the total number of tips, length, volume, and surface area of roots, and improved the root-to-shoot ratio. P and/or N deficiency inhibited NO3 - influx into roots, and H+ pumps played a important role in the response to P and/or N deficiency. Conjoint analysis of differentially expressed genes and differentially accumulated metabolites in roots revealed that N and/or P deficiency altered the biosynthesis of cell wall components such as cellulose, hemicellulose, lignin, and pectin. The expression of MdEXPA4 and MdEXLB1, two cell wall expansin genes, were shown to be induced by N and/or P deficiency. Overexpression of MdEXPA4 enhanced root development and improved tolerance to N and/or P deficiency in transgenic Arabidopsis thaliana plants. In addition, overexpression of MdEXLB1 in transgenic Solanum lycopersicum seedlings increased the root surface area and promoted acquisition of N and P, thereby facilitating plant growth and adaptation to N and/or P deficiency. Collectively, these results provided a reference for improving root architecture in dwarfing rootstock and furthering our understanding of integration between N and P signaling pathways.
Collapse
Affiliation(s)
- Bin Xie
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanhui Chen
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yanzhen Zhang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Xiuhong An
- Research Center for Agricultural Engineering Technology of Mountain District of Hebei/Mountainous Areas Research Institute, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Li
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - An Yang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Guodong Kang
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Jiangtao Zhou
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Cungang Cheng
- Key Laboratory of Mineral Nutrition and Efficient Fertilization for Deciduous Fruits, Liaoning Province/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs/Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|