1
|
Ruan L, Wu L, Liang Y, Pang B, Shang C. Physiological response of microalga Dunaliella parva when treated with MeJA, GA3. PLoS One 2024; 19:e0308730. [PMID: 39436914 PMCID: PMC11495637 DOI: 10.1371/journal.pone.0308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/30/2024] [Indexed: 10/25/2024] Open
Abstract
DpAP2 is a transcription factor regulating carotenoid biosynthesis pathway. It was speculated that MeJA significantly decreased expression of DpAP2 gene, then the decreasing DpAP2 expression significantly inhibited expression of some key enzyme genes such as PSY, PDS and GGPS in carotenoid biosynthesis pathway. In contrast, it was speculated that GA3 significantly increased expression of DpAP2 gene, then the increasing DpAP2 expression significantly increased expression of some key enzyme genes such as PDS and GGPS in carotenoid biosynthesis pathway. To increase the content of carotenoid, we evaluated the effect of DpAP2 overexpression on carotenoid accumulation in D. parva. Transgenic D. parva showed a higher carotenoid content (3.18 mg/g DW) compared with control group (2.13 mg/g DW) at 9 d. The dosage effects of exogenous hormones MeJA and GA3 were found in D. parva cells treated with different concentrations of MeJA (10, 20, 50, 100 μM) and GA3 (10, 20, 50, 100 μM). The high concentrations of MeJA (10-100 μM) inhibited the accumulation of carotenoid, and the relative expression of DpAP2, PSY, PDS and GGPS decreased significantly. On the contrary, the relative expression of DpAP2, PDS and GGPS increased significantly when D. parva was treated with 10, 20, 50 and 100 μM GA3, which promoted the biosynthesis of carotenoid. Therefore, we inferred that there was a hierarchical regulation from hormone, transcription factor, key enzyme gene to carotenoid accumulation in carotenoid biosynthesis. Carotenoid biosynthesis was enhanced by DpAP2 overexpression (1.4930 fold of control) and exogenous substances such as GA3 (1.5889 fold of control), which laid a foundation for massive accumulation of carotenoids in microalgae. In the future, further studies were required to demonstrate the complex regulatory network.
Collapse
Affiliation(s)
- Lingru Ruan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Lina Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Yanyan Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Bingbing Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
2
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Guo M, Yang F, Zhu L, Wang L, Li Z, Qi Z, Fotopoulos V, Yu J, Zhou J. Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution. Nat Commun 2024; 15:6667. [PMID: 39107290 PMCID: PMC11303406 DOI: 10.1038/s41467-024-51036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Natural evolution has resulted in reduced cold tolerance in cultivated tomato (Solanum lycopersicum). Herein, we perform a combined analysis of ATAC-Seq and RNA-Seq in cold-sensitive cultivated tomato and cold-tolerant wild tomato (S. habrochaites). We identify that WRKY34 has the most significant association with differential chromatin accessibility and expression patterns under cold stress. We find that a 60 bp InDel in the WRKY34 promoter causes differences in its transcription and cold tolerance among 376 tomato accessions. This 60 bp fragment contains a GATA cis-regulatory element that binds to SWIBs and GATA29, which synergistically suppress WRKY34 expression under cold stress. Moreover, WRKY34 interferes with the CBF cold response pathway through regulating transcription and protein levels. Our findings emphasize the importance of polymorphisms in cis-regulatory regions and their effects on chromatin structure and gene expression during crop evolution.
Collapse
Affiliation(s)
- Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Fengjun Yang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Lijuan Zhu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Leilei Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhichao Li
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Vasileios Fotopoulos
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Lemesos, 3036, Cyprus
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Regulation, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572000, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
4
|
He X, Liu K, Wu Y, Xu W, Wang R, Pirrello J, Bouzayen M, Wu M, Liu M. A transcriptional cascade mediated by two APETALA2 family members orchestrates carotenoid biosynthesis in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1227-1241. [PMID: 38546046 DOI: 10.1111/jipb.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body. Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding. In this study, we determined that SlAP2c, an APETALA2 (AP2) family member, acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato (Solanum lycopersicum). Knockout of SlAP2c in both the "MicroTom" and "Ailsa Craig" backgrounds resulted in greater lycopene accumulation, whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type. We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters. Moreover, SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS (TPL)2/4 and forms a complex with histone deacetylase (had)1/3, thereby reducing the histone acetylation levels of lycopene biosynthesis genes. Furthermore, SlAP2a, a homolog of SlAP2c, acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening. Therefore, we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato, laying the foundation for the manipulation of carotenoid metabolism in plants.
Collapse
Affiliation(s)
- Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31013, France
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zhang C, Liang Q, Wang Y, Liang S, Huang Z, Li H, Escalona VH, Yao X, Cheng W, Chen Z, Zhang F, Wang Q, Tang Y, Sun B. BoaBZR1.1 mediates brassinosteroid-induced carotenoid biosynthesis in Chinese kale. HORTICULTURE RESEARCH 2024; 11:uhae104. [PMID: 38883328 PMCID: PMC11179724 DOI: 10.1093/hr/uhae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.
Collapse
Affiliation(s)
- Chenlu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiannan Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yilin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Sha Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Victor Hugo Escalona
- Faculty of Agricultural Sciences, University of Chile, Santiago 8820000, Metropolitan Region, Chile
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Zhifeng Chen
- College of Biology and Agriculture Technology, Zunyi Normal University, Zunyi 563000, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Tang M, Zhang W, Lin R, Li L, He L, Yu J, Zhou Y. Genome-wide characterization of cytochrome P450 genes reveals the potential roles in fruit ripening and response to cold stress in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14332. [PMID: 38710502 DOI: 10.1111/ppl.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.
Collapse
Affiliation(s)
- Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenjing Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| |
Collapse
|
7
|
Fang H, Zuo J, Ma Q, Zhang X, Xu Y, Ding S, Wang J, Luo Q, Li Y, Wu C, Lv J, Yu J, Shi K. Phytosulfokine promotes fruit ripening and quality via phosphorylation of transcription factor DREB2F in tomato. PLANT PHYSIOLOGY 2024; 194:2739-2754. [PMID: 38214105 DOI: 10.1093/plphys/kiae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.
Collapse
Affiliation(s)
- Hanmo Fang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinhua Zuo
- Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Ma
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuanbo Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanrui Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yimei Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changqi Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianrong Lv
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
9
|
Zou Q, Huang L, Gu J, Pang B, Shang C. Physiological changes of microalga Dunaliella parva under the treatment of PEG, CaCl2. PLoS One 2023; 18:e0295973. [PMID: 38100462 PMCID: PMC10723680 DOI: 10.1371/journal.pone.0295973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Carotenoids are antioxidants, which reduce various chronic diseases of human, and have many industrial applications. The halophilic Dunaliella parva (D. parva) is rich in carotenoids. The compounds CaCl2 and PEG are the popular metabolic enhancers. To further enhance carotenogenesis, D. parva was treated with two compounds polyethylene glycol (PEG) and CaCl2. Application of CaCl2 and PEG enhanced the carotenoids contents and the antioxidant activities of carotenoids compared to control group (no treatment of CaCl2 or PEG). The highest carotenoids contents were obtained by treating D. parva with 40 ppm CaCl2 (3.11 mg/g dry weight, DW) and 80 ppm PEG (2.78 mg/g DW) compared with control group (1.96 mg/g DW). When D. parva was treated with 40 ppm CaCl2 and 80 ppm PEG, protein contents reached the highest values (90.28 mg/g DW and 89.57 mg/g DW) compared to that of control group (73.42 mg/g DW). The antioxidant activities of carotenoids samples were determined. Generally, the antioxidant activities of carotenoids from D. parva treated with PEG and CaCl2 were superior to that of control group. The antioxidant activities of carotenoids mainly contained reducing power, hydroxyl radical scavenging activity and superoxide radical scavenging activity. The reducing powers of carotenoids extracts from 20 ppm CaCl2 group (2.07%/mg carotenoids) and 120 ppm PEG group (1.59%/mg carotenoids) were significantly higher than that of control group (<1.25%/mg carotenoids). The superoxide radical scavenging activities of carotenoids extracts from 40 ppm CaCl2 group (70.33%/mg carotenoids) and 80 ppm PEG group (65.94%/mg carotenoids) were significantly higher than that of control group (<55%/mg carotenoids). This paper laid a foundation for massive accumulation of carotenoids in microalga D. parva.
Collapse
Affiliation(s)
- Qiman Zou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Limei Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinghui Gu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Bingbing Pang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
10
|
Sharma D, Koul A, Bhushan S, Gupta S, Kaul S, Dhar MK. Insights into microRNA-mediated interaction and regulation of metabolites in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1142-1153. [PMID: 37681459 DOI: 10.1111/plb.13572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
microRNAs direct regulation of various metabolic pathways in plants and animals. miRNAs may be useful in developing novel/elite genotypes, with enhanced metabolites and disease resistance. We examined miRNAs in tomato. In tomato, miRNAs in the carotenoid pathway have not been fully elucidated. We examined the potential role of miRNAs in biosynthesis of carotenoids, transcript profiling of miRNAs and their possible targets (genes and transcription factors) at different development stages of tomato using stem-loop PCR and RT-qPCR. We also identified miRNAs targeting key flavonoid genes, such as chalcone isomerase (CHI), and dihydroflavonol-4-reductase (DFR). Distinct expression profiles of miRNAs and their targets were found in fruits of three tomato accessions, suggesting carotenoid regulation by miRNAs at various stages of fruit development. This was also confirmed using HPLC of the carotenoids. The present study may help in understanding possible regulation of carotenoid biosynthesis. The identified miRNAs can be exploited to enhance biosynthesis of different carotenoids in plants.
Collapse
Affiliation(s)
- D Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - A Koul
- Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - S Bhushan
- Department of Botany, Central University of Jammu, Bagla (Rahya Suchani), Samba, Jammu, India
| | - S Gupta
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - S Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - M K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
11
|
Wang H, Tian Y, Li Y, Wei J, Ma F, Liang W, Li C. Analysis of Carotenoids and Gene Expression in Apple Germplasm Resources Reveals the Role of MdCRTISO and MdLCYE in the Accumulation of Carotenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15121-15131. [PMID: 37796201 DOI: 10.1021/acs.jafc.3c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Carotenoids play an important role in the coloring and nutritional value of apple (Malus spp.) fruits. Here, six carotenoids, including lutein, zeaxanthin, β-carotene, β-cryptoxanthin, violaxanthin, and neoxanthin, were detected in 105 fruits of apple germplasm resources, which showed a skewed distribution in both the peel and pulp. There were more carotenoids in the peel than in the pulp, and lutein and β-carotene were the primary carotenoids that were present. The expression levels of most carotenoid pathway genes in germplasm fruits during fruit development were higher in the fruits that had an abundance of carotenoids. A linear relationship analysis showed that the expression levels of MdCRTISO and MdLCYE were highly correlated with the content of carotenoids. The leaves accumulated the greatest number of carotenoids, while the roots had the lowest amount. MdCRTISO and MdLCYE were highly expressed in the fruits compared to other tissues. Transgenic calli and transiently transformed fruits confirmed that MdCRTISO and MdLCYE affected the biosynthesis of carotenoids owing to their effects on the expression of other genes for enzymes in the carotenoid pathway. Our findings will extend the understanding of carotenoid biosynthesis in apple and excavate apple germplasm resources with rich carotenoids to breed high-quality apples.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|