1
|
Xu J, Liang Y, Li N, Dang S, Jiang A, Liu Y, Guo Y, Yang X, Yuan Y, Zhang X, Yang Y, Du Y, Shi A, Liu X, Li D, He K. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism. Nat Cell Biol 2024; 26:1652-1668. [PMID: 39300312 DOI: 10.1038/s41556-024-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Endocytosis and recycling control the uptake and retrieval of various materials, including membrane proteins and lipids, in all eukaryotic cells. These processes are crucial for cell growth, organization, function and environmental communication. However, the mechanisms underlying efficient, fast endocytic recycling remain poorly understood. Here, by utilizing a biosensor and imaging-based screening, we uncover a recycling mechanism that couples endocytosis and fast recycling, which we name the clathrin-associated fast endosomal recycling pathway (CARP). Clathrin-associated tubulovesicular carriers containing clathrin, AP1, Arf1, Rab1 and Rab11, while lacking the multimeric retrieval complexes, are generated at subdomains of early endosomes and then transported along actin to cell surfaces. Unexpectedly, the clathrin-associated recycling carriers undergo partial fusion with the plasma membrane. Subsequently, they are released from the membrane by dynamin and re-enter cells. Multiple receptors utilize and modulate CARP for fast recycling following endocytosis. Thus, CARP represents a previously unrecognized endocytic recycling mechanism with kiss-and-run membrane fusion.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiqun Liu
- National Center for Protein Sciences and Core Facilities of Life Sciences at Peking University, College of Life Sciences, Peking University, Beijing, China
| | - Yuting Guo
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yang
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaran Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast DJ, Hanson PI. IST1 regulates select recycling pathways. Traffic 2024; 25:e12921. [PMID: 37926552 PMCID: PMC11027954 DOI: 10.1111/tra.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
Affiliation(s)
- Amy K Clippinger
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wonjin Yoo
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast D, Hanson PI. IST1 regulates select endosomal recycling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551359. [PMID: 37577466 PMCID: PMC10418098 DOI: 10.1101/2023.07.31.551359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
|
4
|
Abdul-Salam VB, Russomanno G, Chien-Nien C, Mahomed AS, Yates LA, Wilkins MR, Zhao L, Gierula M, Dubois O, Schaeper U, Endruschat J, Wojciak-Stothard B. CLIC4/Arf6 Pathway. Circ Res 2019; 124:52-65. [PMID: 30582444 PMCID: PMC6325770 DOI: 10.1161/circresaha.118.313705] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Increased expression of CLIC4 (chloride intracellular channel 4) is a feature of endothelial dysfunction in pulmonary arterial hypertension, but its role in disease pathology is not fully understood. OBJECTIVE To identify CLIC4 effectors and evaluate strategies targeting CLIC4 signaling in pulmonary hypertension. METHODS AND RESULTS Proteomic analysis of CLIC4-interacting proteins in human pulmonary artery endothelial cells identified regulators of endosomal trafficking, including Arf6 (ADP ribosylation factor 6) GTPase activating proteins and clathrin, while CLIC4 overexpression affected protein regulators of vesicular trafficking, lysosomal function, and inflammation. CLIC4 reduced BMPRII (bone morphogenetic protein receptor II) expression and signaling as a result of Arf6-mediated reduction in gyrating clathrin and increased lysosomal targeting of the receptor. BMPRII expression was restored by Arf6 siRNA, Arf inhibitor Sec7 inhibitor H3 (SecinH3), and inhibitors of clathrin-mediated endocytosis but was unaffected by chloride channel inhibitor, indanyloxyacetic acid 94 or Arf1 siRNA. The effects of CLIC4 on NF-κB (nuclear factor-kappa B), HIF (hypoxia-inducible factor), and angiogenic response were prevented by Arf6 siRNA and SecinH3. Sugen/hypoxia mice and monocrotaline rats showed elevated expression of CLIC4, activation of Arf6 and NF-κB, and reduced expression of BMPRII in the lung. These changes were established early during disease development. Lung endothelium-targeted delivery of CLIC4 siRNA or treatment with SecinH3 attenuated the disease, reduced CLIC4/Arf activation, and restored BMPRII expression in the lung. Endothelial colony-forming cells from idiopathic pulmonary hypertensive patients showed upregulation of CLIC4 expression and Arf6 activity, suggesting potential importance of this pathway in the human condition. CONCLUSIONS Arf6 is a novel effector of CLIC4 and a new therapeutic target in pulmonary hypertension.
Collapse
Affiliation(s)
- Vahitha B Abdul-Salam
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Giusy Russomanno
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Chen Chien-Nien
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Abdul S Mahomed
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Luke A Yates
- Section of Structural Biology (L.A.Y.), Department of Medicine, Imperial College London, United Kingdom
| | - Martin R Wilkins
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Lan Zhao
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Magdalena Gierula
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Oliver Dubois
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Ute Schaeper
- Silence Therapeutics GmbH, Berlin, Germany (U.S., J.E.)
| | | | - Beata Wojciak-Stothard
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
5
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Tsygankova OM, Keen JH. A unique role for clathrin light chain A in cell spreading and migration. J Cell Sci 2019; 132:jcs.224030. [PMID: 30975920 DOI: 10.1242/jcs.224030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Clathrin heavy chain is the structural component of the clathrin triskelion, but unique functions for the two distinct and highly conserved clathrin light chains (CLCa and CLCb, also known as CLTA and CLTB, respectively) have been elusive. Here, we show that following detachment and replating, CLCa is uniquely responsible for promoting efficient cell spreading and migration. Selective depletion of CLCa, but not of CLCb, reduced the initial phase of isotropic spreading of HeLa, H1299 and HEK293 cells by 60-80% compared to siRNA controls, and wound closure and motility by ∼50%. Surface levels of β1-integrins were unaffected by CLCa depletion. However, CLCa was required for effective targeting of FAK (also known as PTK2) and paxillin to the adherent surface of spreading cells, for integrin-mediated activation of Src, FAK and paxillin, and for maturation of focal adhesions, but not their microtubule-based turnover. Depletion of CLCa also blocked the interaction of clathrin with the nucleation-promoting factor WAVE complex, and altered actin distribution. Furthermore, preferential recruitment of CLCa to budding protrusions was also observed. These results comprise the first identification of CLCa-specific functions, with implications for normal and neoplastic integrin-based signaling and cell migration.
Collapse
Affiliation(s)
- Oxana M Tsygankova
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James H Keen
- Department of Biochemistry and Molecular Biology, Cell Biology and Signaling Program of the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Ratcliffe CDH, Sahgal P, Parachoniak CA, Ivaska J, Park M. Regulation of Cell Migration and β1 Integrin Trafficking by the Endosomal Adaptor GGA3. Traffic 2016; 17:670-88. [PMID: 26935970 DOI: 10.1111/tra.12390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
The integrin family of cell adhesion receptors link extracellular matrices to intracellular signaling pathways and the actin cytoskeleton; and regulate cell migration, proliferation and survival in normal and diseased tissues. The subcellular location of integrin receptors is critical for their function and deregulated trafficking is implicated in various human diseases. Here we identify a role for Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3), in regulating trafficking of β1 integrin. GGA3 knockdown reduces cell surface and total levels of α2, α5 and β1 integrin subunits, inhibits cell spreading, reduces focal adhesion number, as well as cell migration. In the absence of GGA3, integrins are increasingly retained inside the cell, traffic toward the perinuclear lysosomal compartment and their degradation is enhanced. Integrin traffic and maintenance of integrin levels are dependent on the integrity of the Arf binding site of GGA3. Furthermore, sorting nexin 17 (SNX17), a critical regulator of integrin recycling, becomes mislocalized to enlarged late endosomes upon GGA3 depletion. These data support a model whereby GGA3, through its ability to regulate SNX17 endosomal localization and through interaction with Arf6 diverts integrins from the degradative pathway supporting cell migration.
Collapse
Affiliation(s)
- Colin D H Ratcliffe
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku, 20520, Finland
| | - Christine A Parachoniak
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku, 20520, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, 20500, Finland
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
8
|
Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5:3891. [PMID: 24852344 PMCID: PMC4050264 DOI: 10.1038/ncomms4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin–actin interactions needed for recycling by G-clathrin during migration. Clathrin light chain (CLC) subunits are dispensable for clathrin-mediated endocytosis of a number of cargoes. Majeed et al. report that CLCs are however required for gyrating-clathrin-dependent recycling of inactive β1-integrins, the absence of which impairs cell migration.
Collapse
|
9
|
Stahlschmidt W, Robertson MJ, Robinson PJ, McCluskey A, Haucke V. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J Biol Chem 2014; 289:4906-18. [PMID: 24407285 DOI: 10.1074/jbc.m113.535211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.
Collapse
Affiliation(s)
- Wiebke Stahlschmidt
- From the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
10
|
Abstract
Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.
Collapse
|