1
|
Joshi AS. Peroxisomal Membrane Contact Sites in Yeasts. Front Cell Dev Biol 2021; 9:735031. [PMID: 34869317 PMCID: PMC8640217 DOI: 10.3389/fcell.2021.735031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are ubiquitous, single membrane-bound organelles that play a crucial role in lipid metabolism and human health. While peroxisome number is maintained by the division of existing peroxisomes, nascent peroxisomes can be generated from the endoplasmic reticulum (ER) membrane in yeasts. During formation and proliferation, peroxisomes maintain membrane contacts with the ER. In addition to the ER, contacts between peroxisomes and other organelles such as lipid droplets, mitochondria, vacuole, and plasma membrane have been reported. These membrane contact sites (MCS) are dynamic and important for cellular function. This review focuses on the recent developments in peroxisome biogenesis and the functional importance of peroxisomal MCS in yeasts.
Collapse
Affiliation(s)
- Amit S Joshi
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Ferreira JV, Carvalho P. Pex30-like proteins function as adaptors at distinct ER membrane contact sites. J Cell Biol 2021; 220:212563. [PMID: 34402813 PMCID: PMC8374871 DOI: 10.1083/jcb.202103176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Membrane lipids and proteins synthesized in the ER are used for de novo assembly of organelles, such as lipid droplets and peroxisomes. After assembly, the growth of these organelles is supported by ER-derived lipids transferred at membrane contact sites (MCSs). How ER sites for organelle biogenesis and lipid transfer are established and regulated is unclear. Here, we investigate how the ER membrane protein Pex30 and its family members Pex28, Pex29, Pex31, and Pex32 target and function at multiple MCSs. We show that different Pex30 complexes function at distinct ER domains and MCSs. Pex30 targets ER–peroxisome MCSs when bound to Pex28 and Pex32, organizes the nuclear–vacuolar junction when bound to Pex29, and promotes the biogenesis of lipid droplets independently of other family members. Importantly, the reticulon homology domain (RHD) mediates the assembly of the various Pex30 complexes. Given the role of RHD in membrane shaping, our findings offer a mechanistic link between MCS and regulation of membrane curvature.
Collapse
Affiliation(s)
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Hulmes GE, Hutchinson JD, Dahan N, Nuttall JM, Allwood EG, Ayscough KR, Hettema EH. The Pex3-Inp1 complex tethers yeast peroxisomes to the plasma membrane. J Cell Biol 2021; 219:152119. [PMID: 32970792 PMCID: PMC7659723 DOI: 10.1083/jcb.201906021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
A subset of peroxisomes is retained at the mother cell cortex by the Pex3–Inp1 complex. We identify Inp1 as the first known plasma membrane–peroxisome (PM-PER) tether by demonstrating that Inp1 meets the predefined criteria that a contact site tether protein must adhere to. We show that Inp1 is present in the correct subcellular location to interact with both the plasma membrane and peroxisomal membrane and has the structural and functional capacity to be a PM-PER tether. Additionally, expression of artificial PM-PER tethers is sufficient to restore retention in inp1Δ cells. We show that Inp1 mediates peroxisome retention via an N-terminal domain that binds PI(4,5)P2 and a C-terminal Pex3-binding domain, forming a bridge between the peroxisomal membrane and the plasma membrane. We provide the first molecular characterization of the PM-PER tether and show it anchors peroxisomes at the mother cell cortex, suggesting a new model for peroxisome retention.
Collapse
Affiliation(s)
- Georgia E Hulmes
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, England, UK
| | - John D Hutchinson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, England, UK
| | - Noa Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - James M Nuttall
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, England, UK
| | - Ellen G Allwood
- Department of Biomedical Science, University of Sheffield, Sheffield, England, UK
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, England, UK
| | - Ewald H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, England, UK
| |
Collapse
|
4
|
Krikken AM, Wu H, de Boer R, Devos DP, Levine TP, van der Klei IJ. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast. J Cell Biol 2020; 219:152028. [PMID: 32805027 PMCID: PMC7659721 DOI: 10.1083/jcb.201906023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Retention of peroxisomes in yeast mother cells requires Inp1, which is recruited to the organelle by the peroxisomal membrane protein Pex3. Here we show that Hansenula polymorpha Inp1 associates peroxisomes to the plasma membrane. Peroxisome-plasma membrane contact sites disappear upon deletion of INP1 but increase upon INP1 overexpression. Analysis of truncated Inp1 variants showed that the C terminus is important for association to the peroxisome, while a stretch of conserved positive charges and a central pleckstrin homology-like domain are important for plasma membrane binding. In cells of a PEX3 deletion, strain Inp1-GFP localizes to the plasma membrane, concentrated in patches near the bud neck and in the cortex of nascent buds. Upon disruption of the actin cytoskeleton by treatment of the cells with latrunculin A, Inp1-GFP became cytosolic, indicating that Inp1 localization is dependent on the presence of an intact actin cytoskeleton.
Collapse
Affiliation(s)
- Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Huala Wu
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Tim P Levine
- Institute of Ophthalmology, University College London, London, UK
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
6
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|