1
|
Maclean M, Gelderman MP, Kulkarni S, Tomb RM, Stewart CF, Anderson JG, MacGregor SJ, Atreya CD. Non-ionizing 405 nm Light as a Potential Bactericidal Technology for Platelet Safety: Evaluation of in vitro Bacterial Inactivation and in vivo Platelet Recovery in Severe Combined Immunodeficient Mice. Front Med (Lausanne) 2020; 6:331. [PMID: 32010702 PMCID: PMC6974518 DOI: 10.3389/fmed.2019.00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/20/2019] [Indexed: 01/18/2023] Open
Abstract
Bacterial contamination of ex vivo stored platelets is a cause of transfusion-transmitted infection. Violet-blue 405 nm light has recently demonstrated efficacy in reducing the bacterial burden in blood plasma, and its operational benefits such as non-ionizing nature, penetrability, and non-requirement for photosensitizing agents, provide a unique opportunity to develop this treatment for in situ treatment of ex vivo stored platelets as a tool for bacterial reduction. Sealed bags of platelet concentrates, seeded with low-level Staphylococcus aureus contamination, were 405 nm light-treated (3–10 mWcm−2) up to 8 h. Antimicrobial efficacy and dose efficiency was evaluated by quantification of the post-treatment surviving bacterial contamination levels. Platelets treated with 10 mWcm−2 for 8 h were further evaluated for survival and recovery in severe combined immunodeficient (SCID) mice. Significant inactivation of bacteria in platelet concentrates was achieved using all irradiance levels, with 99.6–100% inactivation achieved by 8 h (P < 0.05). Analysis of applied dose demonstrated that lower irradiance levels generally resulted in significant decontamination at lower doses: 180 Jcm−2/10 mWcm−2 (P = 0.008) compared to 43.2 Jcm−2/3 mWcm−2 (P = 0.002). Additionally, the recovery of light-treated platelets, compared to non-treated platelets, in the murine model showed no significant differences (P = >0.05). This report paves the way for further comprehensive studies to test 405 nm light treatment as a bactericidal technology for stored platelets.
Collapse
Affiliation(s)
- Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Monique P Gelderman
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sandhya Kulkarni
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Rachael M Tomb
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Chintamani D Atreya
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
2
|
Kotenkova EA, Polishchuk E. Assessment of antimicrobial potential of substances isolated from some wastes of meat processing industry. POTRAVINARSTVO 2019. [DOI: 10.5219/1079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The slaughter of farm animals generates a large number of by-products. Meat waste management includes various methods, but cost-effective technologies are still in priority. This manuscript reports the results of the study of antimicrobial activity of substances isolated from such wastes of meat processing industry as bovine and pork mucous membranes and epithelial tissues. Proteomic study included two-dimensional electrophoresis with following mass spectrometric identification. Antimicrobial activity against L. monocytogenes, P. aeruginosa and S. aureus of neutralized native extracts and after enzymatic treatment as well as its ultrafiltrates was determined by flow cytometry with EvaGreen and PI dyes. It was shown that a large number of histones were found in bovine mucous membranes as well as several tissue-specific proteins, which would be a precursor of bioactive peptides. Bovine mucous membranes of the tongue and nasal cavity possessed the greatest activity in relation to P. aeruginosa, the rate of surviving cells decreased to 22.0%. Bovine mucous membranes of the rectum and the oral cavity, submandibular lymph nodes, pig mucous membranes of the larynx, tongue, lips, and rectum increased dead cells count up to 40% of all cells. Bovine nasal mucosa and pork mucous of labial cavity possessed the greatest activity against S. aureus, the rate of surviving cells did not exceed 10.0%. Determination of antimicrobial action against L. monocytogenes of native samples and treated with trypsin showed that bovine mucous membranes of the rectum and oral cavity, pork mucosa of the lips and submandibular glands were the most active. Treatment with trypsin or ultrafiltration demonstrated different effects on activity of samples. It was shown the perspectivity of recycling of such type of by-products into effective and demanded substances which can be used, for example, in the food industry as an alternative to chemical preservatives.
Collapse
|
3
|
Alabdullatif M, Atreya CD, Ramirez-Arcos S. Antimicrobial peptides: an effective approach to prevent bacterial biofilm formation in platelet concentrates. Transfusion 2018; 58:2013-2021. [DOI: 10.1111/trf.14646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chintamani D. Atreya
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research; U.S. Food and Drug Administration; Silver Spring Maryland
| | | |
Collapse
|
4
|
Naghadeh HT, Sharifi Z, Soleimani S, Jamaat ZPM, Ferdowsi S. Efficacy of ε-Poly-L-lysine as an Antibacterial Additive for Platelets Stored at Room Temperature. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:509-511. [PMID: 29234187 PMCID: PMC5722972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Hosein Timori Naghadeh
- Department of Pathology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zohreh Sharifi
- Department of Virology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeideh Soleimani
- Department of Virology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zainab Pir Mohamad Jamaat
- Department of Biotechnology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Shirin Ferdowsi
- Department of Hematology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran,Kurdistan Blood Transfusion Organization, Sanandaj, Iran,Correspondence: Shirin Ferdowsi, PhD; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine P.O. Box: 14665-1157, Tehran, Iran Tel: +98 21 44720740 Fax: +98 21 44720740
| |
Collapse
|
5
|
Cai TQ, Wickham LA, Sitko G, Michener MS, Raubertas R, Handt L, Chintala M, Seiffert D, Forrest M. Platelet transfusion reverses bleeding evoked by triple anti-platelet therapy including vorapaxar, a novel platelet thrombin receptor antagonist. Eur J Pharmacol 2015; 758:107-14. [PMID: 25857224 DOI: 10.1016/j.ejphar.2015.03.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023]
Abstract
Vorapaxar is a novel protease-activated receptor-1 (PAR-1) antagonist recently approved for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. Patients who received vorapaxar in addition to standard of care antiplatelet therapy had an increased incidence of major bleeding events compared with placebo. To assess whether platelet transfusion can restore hemostasis in primates on triple antiplatelet therapy, template bleeding times were assessed concurrently in the buccal mucosa, finger pad, and distolateral tail of anesthetized cynomolgus macaques to evaluate bleeding with vorapaxar as either monotherapy or in combination with aspirin or aspirin and clopidogrel. Aspirin (5mg/kg, IV) or vorapaxar (1mg/kg, PO) alone had no significant effect on bleeding times in the three vascular beds examined. A modest (<2-fold) increase in bleeding time was achieved in the three beds with the dual combination of aspirin and vorapaxar. Major increases in bleeding time were achieved in the three beds with the triple combination of aspirin (5mg/kg, IV), vorapaxar (1mg/kg, PO), and clopidogrel (1mg/kg, PO). Transfusion of fresh human platelet rich plasma, but not platelet poor plasma, reversed the increase in bleeding time in the triple therapy group. Transfusion of human platelets may be a viable approach in situations requiring a rapid reversal of platelet function in individuals treated with triple anti-platelet therapy that includes vorapaxar.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Madhu Chintala
- Cardiometabolic Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Dietmar Seiffert
- Cardiometabolic Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | | |
Collapse
|
6
|
Bosch-Marcé M, Seetharaman S, Kurtz J, Mohan KVK, Wagner SJ, Atreya CD. Leukoreduced whole blood-derived platelets treated with antimicrobial peptides maintain in vitro properties during storage. Transfusion 2014; 54:1604-9. [DOI: 10.1111/trf.12534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Marta Bosch-Marcé
- Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|