1
|
Riedl MA, Soteres D, Sublett JW, Desai B, Tomita D, Collis P, Bernstein JA. Hereditary angioedema outcomes in US patients switched from injectable long-term prophylactic medication to oral berotralstat. Ann Allergy Asthma Immunol 2024; 132:505-511.e1. [PMID: 38006972 DOI: 10.1016/j.anai.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Berotralstat, a first-line, once-daily, oral plasma kallikrein inhibitor for long-term prophylaxis of hereditary angioedema (HAE), is an effective and well-tolerated treatment option. OBJECTIVE To summarize the safety, effectiveness, and impact on treatment satisfaction in patients who switched from injectable long-term prophylactics to oral berotralstat monotherapy (150 mg daily) at US sites in the international open-label APeX-S study. METHODS APeX-S was an open-label, Phase II study of berotralstat conducted in 22 countries. Here, we focus on APeX-S patients enrolled at US sites who switched from injectable long-term prophylactics to berotralstat 150 mg once-daily monotherapy. RESULTS A total of 34 patients discontinued lanadelumab (n = 21), subcutaneous C1 esterase inhibitor (n = 11), or intravenous C1 esterase inhibitor (n = 2) and switched to berotralstat 150 mg monotherapy. Vomiting, diarrhea, and upper respiratory tract infection were the most common adverse events (each 11.8%). Mean monthly attack rates were consistently low after the switch to berotralstat. The mean (SEM) monthly attack rate was 0.29 (0.11) at Month 1, 0.48 (0.15) at Month 6, and 0.58 (0.23) at Month 12. The median attack rate was 0 attack/mo throughout 12 months of treatment. Improvements were observed in the Treatment Satisfaction Questionnaire for Medication from baseline to Month 12 after the switch to berotralstat monotherapy, with the greatest improvements in convenience. CONCLUSION The transition from injectable prophylactic medication to berotralstat was generally well tolerated. Patients switching to berotralstat monotherapy maintained good control of their HAE symptoms and reported improved treatment satisfaction. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03472040.
Collapse
Affiliation(s)
- Marc A Riedl
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Daniel Soteres
- Asthma & Allergy Associates P.C., Colorado Springs, Colorado
| | | | | | - Dianne Tomita
- BioCryst Pharmaceuticals, Inc, Durham, North Carolina
| | - Phil Collis
- BioCryst Pharmaceuticals, Inc, Durham, North Carolina
| | - Jonathan A Bernstein
- University of Cincinnati College of Medicine, Cincinnati, Ohio; University of Cincinnati, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology.
| |
Collapse
|
2
|
Martinez-Saguer I, Bork K, Latysheva T, Zabrodska L, Chopyak V, Nenasheva N, Totolyan A, Krivenchuk V. Plasma-derived C1 esterase inhibitor pharmacokinetics and safety in patients with hereditary angioedema. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100178. [PMID: 38033485 PMCID: PMC10684372 DOI: 10.1016/j.jacig.2023.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 12/02/2023]
Abstract
Background Over 40 years of use demonstrates that complement 1 esterase inhibitor (C1-INH) concentrate is effective and well tolerated for acute edema attacks and prophylaxis in patients with hereditary angioedema. OCTA-C1-INH is a new stable, virus-inactivated, nanofiltrated concentrate of C1-INH derived from human plasma. Objective We investigated the pharmacokinetics and safety profile of new C1-INH in people with hereditary angioedema during an attack-free period. Methods In this prospective, multicenter, open-label, single-arm study, adults with hereditary angioedema type I/II received a single intravenous dose of 20 IU/kg C1-INH. Blood samples were taken ≤30 minutes before infusion, and 0, 0.25, 1, 2, 6, 12, 24, 48, 72, 120, 144, and 168 hours after infusion. The primary end point was assessing the pharmacokinetic parameters of C1-INH measured by C1-INH activity. Safety end points were also examined. Results Twenty patients received a single dose of 20 IU/kg new C1-INH with a mean (standard deviation) total dose of 1457.3 (356.51) IU. Mean (standard deviation) area under the curve normalized by dose was 51.6 (17.9) h∙IU/mL/IU, maximum blood concentration was 1.14 (0.989) IU/mL, incremental recovery was 0.0466 (0.051) (IU∙kg)/(IU∙mL), half-life was 0.598 (0.716) hours, and time to maximum concentration was 0.598 (0.716) hours. No thromboembolic events were recorded. No treatment-emergent adverse events were rated as severe/serious. Conclusion PK parameters of new C1-INH were in line with those reported for other C1-INH concentrates. New C1-INH demonstrated a favorable safety profile in patients with C1-INH deficiency. Further studies are warranted to determine the effectiveness and longer-term safety of new C1-INH.
Collapse
Affiliation(s)
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tatiana Latysheva
- Federal State Budget Institution “National Research Center Institute of Immunology” of FMBA of Russia, Moscow, Russia
| | - Liudmyla Zabrodska
- SI Institute of Otolaryngology na Prof O. S. Kolomiychenko of NAMS of Ukraine, Center of Allergic Diseases, Kyiv, Ukraine
| | - Valentyna Chopyak
- Municipal Non-commercial Enterprise of Lviv Regional Council “Lviv Regional Clinical Hospital” Rheumatology Department, Lviv, Ukraine
| | - Natalia Nenasheva
- Federal State Budget Educational Institution of Additional Professional Education “Russian Medical Academy of Continuous Postgraduate Education” of Ministry of Healthcare of Russian Federation, Department of Clinical Allergology, Moscow, Russia
| | - Areg Totolyan
- Federal Budget Institution of Science “Saint Petersburg Scientific Research Institute of Epidemiology and Microbiology named after Pasteur” of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Saint Petersburg, Russia
| | - Vitaliy Krivenchuk
- State Institution “Republican Research and Applied Center for Medical Radiology and Human Ecology”, Gomel, Republic of Belarus
| |
Collapse
|
3
|
Srinivasan C, Ritchie B, Adatia A. Berotralstat in hereditary angioedema due to C1 inhibitor deficiency: first real-world evidence from a Canadian center. Front Immunol 2024; 15:1339421. [PMID: 38318176 PMCID: PMC10839047 DOI: 10.3389/fimmu.2024.1339421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Hereditary angioedema due to C1 inhibitor deficiency is a rare genetic condition that causes recurrent swelling with consequent functional impairment and decreased quality of life. Long-term prophylaxis (LTP) to prevent angioedema episodes is a key component of disease management. Berotralstat, an oral, once-daily plasma kallikrein inhibitor, was approved for LTP by Health Canada in 2022. Methods We conducted a retrospective, real-world study investigating the effectiveness and adverse effects of berotralstat. Data on angioedema frequency, disease control, and adverse events were tabulated. Patient satisfaction with treatment was scored on a 5-point Likert scale, with 1 representing very unsatisfied and 5 representing very satisfied with therapy. Results From June, 2022 and May, 2023, 8 patients with HAE type 1 or type 2 received berotralstat. Effectiveness data were available for 7 patients who continued the drug for at least 3 months, 4 of whom switched to berotralstat from plasma-derived C1 inhibitor LTP. In these 7 patients, the average number of attacks per month decreased from 3.3 to 1.6 (p<0.05), representing a ~52% reduction in attack frequency. Median angioedema control test score numerically improved from 8 to 13 (p=0.0781). Of the 8 patients who received berotralstat, 3 reported no adverse effects and 5 experienced gastrointestinal side effects, which were mild and transient in 3 and led to discontinuation in 1. Average treatment satisfaction was between satisfied and very satisfied at 4.3. Conclusion Berotralstat is an effective agent for long-term prophylaxis in HAE. Most patients experienced no adverse effects or mild, transient gastrointestinal symptoms.
Collapse
Affiliation(s)
- Cindy Srinivasan
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bruce Ritchie
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Adil Adatia
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Iuraşcu M, Balla Z, Pereira C, Andrási N, Varga L, Csuka D, Szilágyi Á, Tripolszki K, Khan S, Susnea I, Bauer P, Cozma C, Farkas H. Application of a dried blood spot based proteomic and genetic assay for diagnosing hereditary angioedema. Clin Transl Allergy 2023; 13:e12317. [PMID: 38006386 PMCID: PMC10668000 DOI: 10.1002/clt2.12317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Hereditary angioedema (HAE) with C1-inhibitor deficiency (C1-INH-HAE) is a rare disease caused by low level (type I) or dysfunction (type II) of the C1-inhibitor protein with subsequent reduction of certain complement protein levels. METHODS To develop and test the reliability of a two-tier method based on C1-INH and C4 quantitation followed by genetic analysis from dried blood spot (DBS) for establishing the diagnosis of C1-INH-HAE. C1-INH and C4 proteins have been quantified in human plasma using a classical immuno-assay and in DBS using a newly developed proteolytic liquid chromatography-mass spectrometry method. Genetic analysis was carried out as reported previously (PMID: 35386643) and by a targeted next-generation sequencing panel, multiplex ligation-dependent probe amplification and in some cases whole genome sequencing. RESULTS DBS quantification of C1-INH and C4 showed the same pattern as plasma, offering the possibility of screening patients with AE symptoms either locally or remotely. Genetic analysis from DBS verified each of the previously identified SERPING1 mutations of the tested C1-INH-HAE patients and revealed the presence of other rare variations in genes that may be involved in the pathogenesis of AE episodes. CONCLUSIONS C1-INH/C4 quantification in DBS can be used for screening of hereditary AE and DNA extracted from dried blood spots is suitable for identifying various types of mutations of the SERPING1 gene.
Collapse
Affiliation(s)
| | - Zsuzsanna Balla
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
- HNO‐Praxis SchaffhausenSchaffhausenSwitzerland
| | | | - Noémi Andrási
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
| | - Lilian Varga
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
| | - Dorottya Csuka
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
| | - Ágnes Szilágyi
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
| | | | | | | | | | | | - Henriette Farkas
- Department of Internal MedicineHungarian Angioedema Center of Reference and ExcellenceHaematology Semmelweis UniversityBudapestHungary
| |
Collapse
|
5
|
Gorini F, Santoro M, Pierini A, Mezzasalma L, Baldacci S, Bargagli E, Boncristiano A, Brunetto MR, Cameli P, Cappelli F, Castaman G, Coco B, Donati MA, Guerrini R, Linari S, Murro V, Olivotto I, Parronchi P, Pochiero F, Rossi O, Scappini B, Sodi A, Vannucchi AM, Coi A. Orphan Drug Use in Patients With Rare Diseases: A Population-Based Cohort Study. Front Pharmacol 2022; 13:869842. [PMID: 35652051 PMCID: PMC9148958 DOI: 10.3389/fphar.2022.869842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Orphan drugs are used for the diagnosis, prevention and treatment of rare diseases that, in the European Union, are defined as disorders affecting no more than 5 persons in 10,000. So far, a total of around 800 orphan medicinal products have been approved by the European Medicines Agency, however the utilization profile of orphan drugs has yet to be explored. This study aimed at assessing the utilization profile of orphan drugs authorized for marketing by the Italian Medicines Agency using population-based data. Methods: A total of 21 orphan drugs used in outpatient settings, approved in the European Union before or during the 2008-2018 period and involving 15 rare diseases, were included in the study. The monitored population included patients with one of the conditions surveilled by the population-based Tuscany Registry of Rare Diseases and diagnosed between 2000-2018. A multi-database approach was applied, by linking data from the registry with information collected in drug prescriptions databases. The prevalence and intensity of use were estimated for the selected orphan drugs and other non-orphan medications, used to treat the same rare disease and for which a change in the prevalence of use was hypothesized after authorization of the orphan drug. Results: For some diseases (acquired aplastic anemia, tuberous sclerosis complex, most metabolic diseases) a low prevalence of orphan drugs use was observed (range between 1.1-12.5%). Conversely, orphan drugs were frequently used in hemophilia B, Wilson disease and idiopathic pulmonary fibrosis (maximum of 78.3, 47.6 and 41.8%, respectively). For hemophilia B and Leber's hereditary optic neuropathy, there are currently no other medications used in clinical practice in addition to orphan drugs. Six orphan drugs were used for the treatment of pulmonary arterial hypertension, appearing the elective therapy for this disease, albeit with different utilization profiles (range of prevalence 1.7-55.6%). Conclusion: To the best of our knowledge, this is the first study investigating the utilization profile of orphan drugs prescribed in a defined geographical area, and providing relevant information to monitor over time potential changes in the prevalence of these medications as well as in the health care decision making.
Collapse
Affiliation(s)
- Francesca Gorini
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Michele Santoro
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Anna Pierini
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Lorena Mezzasalma
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Silvia Baldacci
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Elena Bargagli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | | | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Francesco Cappelli
- Cardiomyopathy Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Barbara Coco
- Hepatology Unit, University Hospital of Pisa, Pisa, Italy
| | - Maria Alice Donati
- Metabolic and Muscular Unit, A. Meyer Children Hospital, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, A. Meyer Children Hospital-University of Florence, Florence, Italy
| | - Silvia Linari
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, SOD Immunologia e Terapie Cellulari, Careggi University Hospital, University of Florence, Florence, Italy
| | - Francesca Pochiero
- Metabolic and Muscular Unit, A. Meyer Children Hospital, Florence, Italy
| | - Oliviero Rossi
- Immunuallergology Unit, SOD Immunoallergologia, Careggi University Hospital, Florence, Italy
| | | | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Careggi University Hospital, Florence, Italy
| | - Alessandro Maria Vannucchi
- Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
| | - Alessio Coi
- Unit of Epidemiology of Rare Diseases and Congenital Anomalies, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
6
|
Grover SP, Mackman N. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Front Cardiovasc Med 2022; 9:878199. [PMID: 35592395 PMCID: PMC9110684 DOI: 10.3389/fcvm.2022.878199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Appropriate activation of coagulation requires a balance between procoagulant and anticoagulant proteins in blood. Loss in this balance leads to hemorrhage and thrombosis. A number of endogenous anticoagulant proteins, such as antithrombin and heparin cofactor II, are members of the serine protease inhibitor (SERPIN) family. These SERPIN anticoagulants function by forming irreversible inhibitory complexes with target coagulation proteases. Mutations in SERPIN family members, such as antithrombin, can cause hereditary thrombophilias. In addition, low plasma levels of SERPINs have been associated with an increased risk of thrombosis. Here, we review the biological activities of the different anticoagulant SERPINs. We further consider the clinical consequences of SERPIN deficiencies and insights gained from preclinical disease models. Finally, we discuss the potential utility of engineered SERPINs as novel therapies for the treatment of thrombotic pathologies.
Collapse
|
7
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören-Pürsün E, Banerji A, Bara NA, Boccon-Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo AJ, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos-Fogelbach G, Hide M, Kang HR, Kaplan AP, Katelaris CH, Kiani-Alikhan S, Lei WT, Lockey RF, Longhurst H, Lumry W, MacGinnitie A, Malbran A, Martinez Saguer I, Matta Campos JJ, Nast A, Nguyen D, Nieto-Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Sheikh FR, Smith WB, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema - The 2021 revision and update. World Allergy Organ J 2022; 15:100627. [PMID: 35497649 PMCID: PMC9023902 DOI: 10.1016/j.waojou.2022.100627] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2), by providing guidance on common and important clinical issues, such as: 1) How should HAE be diagnosed? 2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? 3) What are the goals of treatment? 4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast feeding women? 5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | | | - Werner Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Ignacio J. Ansotegui
- Department of Allergy & Immunology, Hospital Quironsalúd Bizkaia, Bilbao-Errandio, Spain
| | - Emel Aygören-Pürsün
- Center for Children and Adolescents, University Hospital Frankfurt, Frankfurt, Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Noémi-Anna Bara
- Romanian Hereditary Angioedema Expertise Centre, Mediquest Clinical Research Center, Sangeorgiu de Mures, Romania
| | - Isabelle Boccon-Gibod
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK), Angioedema Center of Reference and Excellence (ACARE), Grenoble Alpes, France
- University Hospital, Grenoble, France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology, Childrens Hospital, Skåne University Hospital, Lund, Sweden
| | - Paula J. Busse
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anette Bygum
- Clinical Institute, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teresa Caballero
- Allergy Department, Hospital Universitario La Paz, IdiPaz, CIBERER U754, Madrid, Spain
| | - Mauro Cancian
- Department of Systems Medicine, University Hospital of Padua, Padua, Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Mark Gompels
- Clinical Immunology, North Bristol NHS Trust, Bristol, United Kingdom
| | - Richard Gower
- Marycliff Clinical Research, Principle Research Solutions, Spokane, WA, United States
| | - Anete S. Grumach
- Clinical Immunology, Centro Universitario FMABC, Sao Paulo, Brazil
| | | | - Michihiro Hide
- Department of Dermatology, Hiroshima Citizens Hospital, Hiroshima, Japan
- Department of Dermatology, Hiroshima University, Hiroshima, Japan
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Allen P. Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Constance H. Katelaris
- Department of Medicine, Campbelltown Hospital and Western Sydney University, Sydney, NSW, Australia
| | | | - Wei-Te Lei
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hilary Longhurst
- Department of Immunology, Auckland District Health Board and Department of Medicine, University of Auckland, Auckland, New Zealand
| | - William Lumry
- Internal Medicine, Allergy Division, University of Texas Health Science Center, Dallas, TX, United States
| | - Andrew MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica, Buenos Aires, Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology, Division of Evidence-Based Medicine Charité–Universitätsmedizin, Berlin, Germany
- Corporate Member of Free University of Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit, Internal Medicine Department, Vinmec Healthcare System, College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, University of Cape Town, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Nieves Prior
- Allergy, Hospital Universitario Severo Ochoa, Madrid, Spain
| | - Avner Reshef
- Angiedema Center, Barzilai University Medical Center, Ashkelon, Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, La Jolla, CA, USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology, University of Alberta, Edmonton, AB, Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - William B. Smith
- Clinical Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Peter J. Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology, Hungarian Angioedema Center of Reference and Excellence, Semmelweis University, Budapest, Hungary
| | - Karsten Weller
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Frauhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Andrea Zanichelli
- Department of Internal Medicine, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-University of Milan, Milan, Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology, Bejing Union Medical College Hospital, Chinese Academy of Medical Sciences, Bejing, China
| | - Bruce Zuraw
- University of California, San Diego, San Diego, CA, United States
| | - Timothy Craig
- Departments of Medicine and Pediatrics, Penn State University, Hershey, PA, USA
| |
Collapse
|
8
|
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören‐Pürsün E, Banerji A, Bara N, Boccon‐Gibod I, Bork K, Bouillet L, Boysen HB, Brodszki N, Busse PJ, Bygum A, Caballero T, Cancian M, Castaldo A, Cohn DM, Csuka D, Farkas H, Gompels M, Gower R, Grumach AS, Guidos‐Fogelbach G, Hide M, Kang H, Kaplan AP, Katelaris C, Kiani‐Alikhan S, Lei W, Lockey R, Longhurst H, Lumry WB, MacGinnitie A, Malbran A, Martinez Saguer I, Matta JJ, Nast A, Nguyen D, Nieto‐Martinez SA, Pawankar R, Peter J, Porebski G, Prior N, Reshef A, Riedl M, Ritchie B, Rafique Sheikh F, Smith WR, Spaeth PJ, Stobiecki M, Toubi E, Varga LA, Weller K, Zanichelli A, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2021 revision and update. Allergy 2022; 77:1961-1990. [PMID: 35006617 DOI: 10.1111/all.15214] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Hereditary angioedema (HAE) is a rare and disabling disease for which early diagnosis and effective therapy are critical. This revision and update of the global WAO/EAACI guideline on the diagnosis and management of HAE provides up-to-date guidance for the management of HAE. For this update and revision of the guideline, an international panel of experts reviewed the existing evidence, developed 28 recommendations, and established consensus by an online DELPHI process. The goal of these recommendations and guideline is to help physicians and their patients in making rational decisions in the management of HAE with deficient C1 inhibitor (type 1) and HAE with dysfunctional C1 inhibitor (type 2), by providing guidance on common and important clinical issues, such as: (1) How should HAE be diagnosed? (2) When should HAE patients receive prophylactic on top of on-demand treatment and what treatments should be used? (3) What are the goals of treatment? (4) Should HAE management be different for special HAE patient groups such as children or pregnant/breast-feeding women? and (5) How should HAE patients monitor their disease activity, impact, and control? It is also the intention of this guideline to help establish global standards for the management of HAE and to encourage and facilitate the use of recommended diagnostics and therapies for all patients.
Collapse
Affiliation(s)
- Marcus Maurer
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Markus Magerl
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | | | - Werner Aberer
- Department of Dermatology Medical University of Graz Graz Austria
| | | | - Emel Aygören‐Pürsün
- Center for Children and Adolescents University Hospital Frankfurt Frankfurt Germany
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology Massachusetts General Hospital Boston Massachusetts USA
| | - Noémi‐Anna Bara
- Romanian Hereditary Angioedema Expertise CentreMediquest Clinical Research Center Sangeorgiu de Mures Romania
| | - Isabelle Boccon‐Gibod
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | - Konrad Bork
- Department of Dermatology University Medical CenterJohannes Gutenberg University Mainz Germany
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK) Angioedema Center of Reference and Excellence (ACARE) Grenoble Alpes University Hospital Grenoble France
| | | | - Nicholas Brodszki
- Department of Pediatric Immunology Childrens HospitalSkåne University Hospital Lund Sweden
| | | | - Anette Bygum
- Clinical Institute University of Southern Denmark Odense Denmark
- Department of Clinical Genetics Odense University Hospital Odense Denmark
| | - Teresa Caballero
- Allergy Department Hospital Universitario La PazIdiPaz, CIBERER U754 Madrid Spain
| | - Mauro Cancian
- Department of Systems Medicine University Hospital of Padua Padua Italy
| | | | - Danny M. Cohn
- Department of Vascular Medicine Amsterdam UMC/University of Amsterdam Amsterdam The Netherlands
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Henriette Farkas
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Mark Gompels
- Clinical Immunology North Bristol NHS Trust Bristol UK
| | - Richard Gower
- Marycliff Clinical ResearchPrinciple Research Solutions Spokane Washington USA
| | | | | | - Michihiro Hide
- Department of Dermatology Hiroshima Citizens Hospital Hiroshima Japan
- Department of Dermatology Hiroshima University Hiroshima Japan
| | - Hye‐Ryun Kang
- Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
| | - Allen Phillip Kaplan
- Division of Pulmonary, Critical Care, Allergy and Immunology Medical university of South Carolina Charleston South Carolina USA
| | - Constance Katelaris
- Department of Medicine Campbelltown Hospital and Western Sydney University Sydney NSW Australia
| | | | - Wei‐Te Lei
- Division of Allergy, Immunology, and Rheumatology Department of Pediatrics Mackay Memorial Hospital Hsinchu Taiwan
| | - Richard Lockey
- Division of Allergy and Immunology Department of Internal Medicine Morsani College of MedicineUniversity of South Florida Tampa Florida USA
| | - Hilary Longhurst
- Department of Immunology Auckland District Health Board and Department of MedicineUniversity of Auckland Auckland New Zealand
| | - William B. Lumry
- Internal Medicine Allergy Division University of Texas Health Science Center Dallas Texas USA
| | - Andrew MacGinnitie
- Division of Immunology Department of Pediatrics Boston Children's HospitalHarvard Medical School Boston Massachusetts USA
| | - Alejandro Malbran
- Unidad de Alergia, Asma e Inmunología Clínica Buenos Aires Argentina
| | | | | | - Alexander Nast
- Department of Dermatology, Venereology and Allergology Division of Evidence‐Based Medicine Charité ‐ Universitätsmedizin Berlincorporate member of Free University of BerlinHumboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Dinh Nguyen
- Respiratory, Allergy and Clinical Immunology Unit Internal Medicine Department Vinmec Healthcare System College of Health SciencesVinUniversity Hanoi Vietnam
| | | | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology University of Cape Town Cape Town South Africa
- Allergy and Immunology Unit University of Cape Town Lung Institute Cape Town South Africa
| | - Grzegorz Porebski
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Nieves Prior
- Allergy Hospital Universitario Severo Ochoa Madrid Spain
| | - Avner Reshef
- Angioderma CenterBarzilai University Medical Center Ashkelon Israel
| | - Marc Riedl
- Division of Rheumatology, Allergy and Immunology University of California San Diego La Jolla California USA
| | - Bruce Ritchie
- Departments of Medicine and Medical Oncology University of Alberta Edmonton AB Canada
| | - Farrukh Rafique Sheikh
- Section of Adult Allergy & Immunology Department of Medicine King Faisal Specialist Hospital & Research Centre Riyadh Saudi Arabia
| | - William R. Smith
- Clinical Immunology and Allergy Royal Adelaide Hospital Adelaide SA Australia
| | - Peter J. Spaeth
- Institute of PharmacologyUniversity of Bern Bern Switzerland
| | - Marcin Stobiecki
- Department of Clinical and Environmental Allergology Jagiellonian University Medical College Krakow Poland
| | - Elias Toubi
- Division of Allergy and Clinical Immunology Bnai Zion Medical CenterAffiliated with Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Lilian Agnes Varga
- Department of Internal Medicine and Haematology Hungarian Angioedema Center of Reference and Excellence Semmelweis University Budapest Hungary
| | - Karsten Weller
- Institute of Allergology Charité—Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology Berlin Germany
| | - Andrea Zanichelli
- Department of Internal Medicine ASST Fatebenefratelli Sacco Ospedale Luigi Sacco‐University of Milan Milan Italy
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology Bejing Union Medical College Hospital & Chinese Academy of Medical Sciences Bejing China
| | - Bruce Zuraw
- University of California, San Diego San Diego California USA
| | - Timothy Craig
- Departments of Medicine and Pediatrics Penn State University Hershey Pennsylvania USA
| |
Collapse
|
9
|
Maetzel A, Smith MD, Duckworth EJ, Hampton SL, De Donatis GM, Murugesan N, Rushbrooke LJ, Li L, Francombe D, Feener EP, Yea CM. KVD900, an oral on-demand treatment for hereditary angioedema: Phase 1 study results. J Allergy Clin Immunol 2022; 149:2034-2042. [DOI: 10.1016/j.jaci.2021.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
|
10
|
van Erp IAM, van Essen TA, Fluiter K, van Zwet E, van Vliet P, Baas F, Haitsma I, Verbaan D, Coert B, de Ruiter GCW, Moojen WA, van der Jagt M, Peul WC. Safety and efficacy of C1-inhibitor in traumatic brain injury (CIAO@TBI): study protocol for a randomized, placebo-controlled, multi-center trial. Trials 2021; 22:874. [PMID: 34863258 PMCID: PMC8642972 DOI: 10.1186/s13063-021-05833-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2021] [Indexed: 01/21/2023] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability across all ages. After the primary impact, the pathophysiologic process of secondary brain injury consists of a neuroinflammation response that critically leads to irreversible brain damage in the first days after the trauma. A key catalyst in this inflammatory process is the complement system. Inhibiting the complement system could therefore be a therapeutic target in TBI. Objective To study the safety and efficacy of C1-inhibitor (C1-INH) compared to placebo in patients with TBI. By temporarily blocking the complement system, we hypothesize a decrease in the posttraumatic neuroinflammatory response resulting in a less unfavorable clinical outcome for TBI patients. Methods CIAO@TBI is a multicenter, randomized, blinded, phase II placebo-controlled trial. Adult TBI patients with GCS < 13 requiring intracranial pressure (ICP) monitoring will be randomized, using block randomization, within 12 h after trauma to one dose 6000 IU C1-INH or placebo. A total of 106 patients will be included, and follow-up will occur up to 12 months. The primary endpoints are (1) Therapy Intensity Level (TIL) Scale, (2) Glasgow Outcome Scale-Extended (GOSE) at 6 months, and (3) complication rate during hospitalization. Outcomes will be determined by a trial nurse blinded for the treatment allocation. Analyses will be conducted in an intention-to-treat analysis. Discussion We expect that C1-INH administration will be safe and potentially effective to improve clinical outcomes by reducing neuroinflammation in TBI patients. Trial registration ClinicalTrials.gov NCT04489160. Registered on 27 July 2020. EudraCT 2020-000140-58 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05833-1.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospital, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, Hague, The Netherlands.
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospital, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, Hague, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter van Vliet
- Department of Intensive Care, Haaglanden Medical Center, The Hague, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Iain Haitsma
- Department of Neurosurgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Dagmar Verbaan
- Neurosurgical Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Bert Coert
- Neurosurgical Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Godard C W de Ruiter
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospital, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, Hague, The Netherlands
| | - Wouter A Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospital, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, Hague, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospital, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, Hague, The Netherlands
| |
Collapse
|
11
|
Mansour E, Palma AC, Ulaf RG, Ribeiro LC, Bernardes AF, Nunes TA, Agrela MV, Bombassaro B, Monfort-Pires M, Camargo RL, Araujo EP, Brunetti NS, Farias AS, Falcão ALE, Santos TM, Trabasso P, Dertkigil RP, Dertkigil SS, Moretti ML, Velloso LA. Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin-Kallikrein System in Severe COVID-19. Viruses 2021; 13:v13020309. [PMID: 33669276 PMCID: PMC7920028 DOI: 10.3390/v13020309] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin–kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin–kallikrein system in two markers that indicate improved disease recovery.
Collapse
Affiliation(s)
- Eli Mansour
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Andre C. Palma
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Raisa G. Ulaf
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Luciana C. Ribeiro
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Ana Flavia Bernardes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Thyago A. Nunes
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Marcus V. Agrela
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Milena Monfort-Pires
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Rafael L. Camargo
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
| | - Eliana P. Araujo
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
- School of Nursing, University of Campinas, 13083-887 Campinas, São Paulo, Brazil
| | - Natalia S. Brunetti
- Autoimmune Research Lab, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil; (N.S.B.); (A.S.F.)
| | - Alessandro S. Farias
- Autoimmune Research Lab, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862 Campinas, São Paulo, Brazil; (N.S.B.); (A.S.F.)
| | - Antônio Luís E. Falcão
- Department of Surgery, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil;
| | - Thiago Martins Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Plinio Trabasso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Rachel P. Dertkigil
- Department of Radiology, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (R.P.D.); (S.S.D.)
| | - Sergio S. Dertkigil
- Department of Radiology, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (R.P.D.); (S.S.D.)
| | - Maria Luiza Moretti
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
| | - Licio A. Velloso
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, 13083-887 Campinas, São Paulo, Brazil; (E.M.); (A.C.P.); (R.G.U.); (L.C.R.); (A.F.B.); (T.A.N.); (M.V.A.); (T.M.S.); (P.T.); (M.L.M.)
- Obesity and Comorbidities Research Center, University of Campinas, 13083-864 Campinas, São Paulo, Brazil; (B.B.); (M.M.-P.); (R.L.C.); (E.P.A.)
- Correspondence:
| |
Collapse
|
12
|
Advances in Hereditary Angioedema: The Prevention of Angioedema Attacks With Subcutaneous C1-Inhibitor Replacement Therapy. JOURNAL OF INFUSION NURSING 2021; 43:134-145. [PMID: 32287168 PMCID: PMC7328861 DOI: 10.1097/nan.0000000000000365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Hereditary angioedema (HAE) is a debilitating condition caused by a functional C1-inhibitor (C1-INH) deficiency and characterized clinically by episodes of subcutaneous or submucosal swelling. C1-INH replacement is highly effective for preventing HAE attacks and can improve health-related quality of life. Once available only for intravenous use, C1-INH is now available as a subcutaneous formulation for self-administration, shown to provide sustained plasma levels of C1-INH and reducing the monthly median HAE attack rate by 95% versus placebo in the phase 3 COMPACT study. Subcutaneously administered C1-INH satisfies multiple unmet needs in the management of patients with HAE.
Collapse
|
13
|
Villavicencio MF, Craig T. A focus on the use of subcutaneous C1-inhibitor for treatment of hereditary angioedema. Expert Rev Clin Immunol 2020; 16:451-455. [DOI: 10.1080/1744666x.2020.1750953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Timothy Craig
- Department of Allergy and Immunology, Penn State University, State College, PA, USA
| |
Collapse
|
14
|
Longhurst H, Farkas H. Biological therapy in hereditary angioedema: transformation of a rare disease. Expert Opin Biol Ther 2020; 20:493-501. [PMID: 31994957 DOI: 10.1080/14712598.2020.1724280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Hereditary angioedema, a disabling condition, with high mortality when untreated, is caused by C1 inhibitor deficiency and other regulatory disorders of bradykinin production or metabolism. This review covers the remarkable progress made in biological therapies for this rare disorder.Areas covered: Over the past 10 years, several evidence-based parenteral treatments have been licensed, including two plasma-derived C1 inhibitor replacement therapies and one recombinant C1 inhibitor replacement for acute treatment of angioedema attacks and synthetic peptides for inhibition of kallikrein or bradykinin B2 receptors, with oral small molecule treatments currently in clinical trial. Moreover, recent advances in prophylaxis by subcutaneous C1 inhibitor to restore near-normal plasma function or by humanized antibody inhibition of kallikrein have resulted in freedom from symptoms for a high proportion of those treated.Expert opinion: This plethora of treatment possibilities has come about as a result of recent scientific advances. Collaboration between patient groups, basic and clinical scientists, physicians, nurses, and the pharmaceutical industry has underpinned this translation of basic science into treatments and protocols. These in their turn have brought huge improvements in prognosis, quality of life and economic productivity to patients, their families, and the societies in which they live.
Collapse
Affiliation(s)
- Hilary Longhurst
- Department of Clinical Immunology, Addenbrooke's Hospital, Cambridge and University College Hospitals, London, UK
| | - Henriette Farkas
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Tanaka KA, Mondal S, Morita Y, Williams B, Strauss ER, Cicardi M. Perioperative Management of Patients With Hereditary Angioedema With Special Considerations for Cardiopulmonary Bypass. Anesth Analg 2020; 131:155-169. [DOI: 10.1213/ane.0000000000004710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Schartz ND, Sommer AL, Colin SA, Mendez LB, Brewster AL. Early treatment with C1 esterase inhibitor improves weight but not memory deficits in a rat model of status epilepticus. Physiol Behav 2019; 212:112705. [PMID: 31628931 PMCID: PMC6879103 DOI: 10.1016/j.physbeh.2019.112705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Status epilepticus (SE) is a prolonged and continuous seizure that lasts for at least 5 min. An episode of SE in a healthy system can lead to the development of spontaneous seizures and cognitive deficits which may be accompanied by hippocampal injury and microgliosis. Although the direct mechanisms underlying the SE-induced pathophysiology remain unknown, a candidate mechanism is hyperactivation of the classical complement pathway (C1q-C3 signaling). We recently reported that SE triggered an increase in C1q-C3 signaling in the hippocampus that closely paralleled cognitive decline. Thus, we hypothesized that blocking activation of the classical complement pathway immediately after SE may prevent the development of SE-induced hippocampal-dependent learning and memory deficits. METHODS Because C1 esterase inhibitor (C1-INH) negatively regulates activation of the classical complement pathway, we used this drug to test our hypothesis. Two groups of male rats were subjected to 1 hr of SE with pilocarpine (280-300 mg/kg, i.p.), and treated with either C1-INH (SE+C1-INH, 20 U/kg, s.c.) or vehicle (SE+veh) at 4, 24, and 48 h after SE. Control rats were treated with saline. Body weight was recorded for up to 23 days after SE. At two weeks post SE, recognition and spatial memory were determined using Novel Object Recognition (NOR) and Barnes maze (BM), respectively, as well as locomotion and anxiety-like behaviors using Open Field (OF). Histological and biochemical methods were used to measure hippocampal injury including cell death, microgliosis, and inflammation. RESULTS One day after SE, both SE groups had a significant loss of body weight compared to controls (p<0.05). By day 14, the weight of SE+C1-INH rats was significantly higher than SE+veh rats (p<0.05), and was not different from controls (p>0.05). At 14 days post-SE, SE+C1-INH rats displayed higher mobility (distance travelled and average speed, p<0.05) and had reduced anxiety-like behaviors (outer duration, p<0.05) than control or SE+veh rats. In NOR, control rats spent significantly more time exploring the novel object vs. the familiar (p<0.05), while rats in both SE groups spent similar amount of time exploring both objects. During days 1-4 of BM training, the escape latency of the control group significantly decreased over time (p<0.05), whereas that of the SE groups did not improve (p>0.05). Compared to vehicle-treated SE rats, SE+C1-INH rats had increased levels of C3 and microglia in the hippocampus, but lower levels of caspase-3 and synaptic markers. CONCLUSIONS These findings suggest that acute treatment with C1-INH after SE may have some protective, albeit limited, effects on the physiological recovery of rats' weight and some anxiolytic effects, but does not attenuate SE-induced deficits in hippocampal-dependent learning and memory. Reduced levels of caspase-3 suggest that treatment with C1-INH may protect against cell death, perhaps by regulating inflammatory pathways and promoting phagocytic/clearance pathways.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandra L Sommer
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Samantha A Colin
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Loyda B Mendez
- School of Science & Technology, Ana G. Méndez University, Carolina, PR 00984, USA.
| | - Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Nicola S, Rolla G, Brussino L. Breakthroughs in hereditary angioedema management: a systematic review of approved drugs and those under research. Drugs Context 2019; 8:212605. [PMID: 31645881 PMCID: PMC6788388 DOI: 10.7573/dic.212605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare genetic disorder, characterized by recurrent and unexpected potentially life-threatening mucosal swelling. The impairment underlying HAE could be a defect in C1-inhibitor activity, or in its serum concentration. Patients affected by HAE should be treated with on-demand or prophylactic drugs. Lifelong C1-inhibitor supplementation is sometimes required. In this review, we review the currently approved drugs for HAE due to C1-inhibitor defect and to describe those under research. In particular, we focused on the mechanisms of action, routes of administration, and efficacy of these therapies. A systematic review of the literature was performed using the PubMed database for original articles and clinical trials of HAE treatments from 2005 to 2019. The approved HAE treatments can minimize the risk of death, but they are not effective in complete healing from the disease. The new gene therapies seem to provide promising opportunities for the treatment of hereditary angioedema. However, there are still many unmet needs, including efficacy, route, and timing of administration.
Collapse
Affiliation(s)
- Stefania Nicola
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| | - Giovanni Rolla
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| | - Luisa Brussino
- Dipartimento di Scienze Mediche - SSDDU Allergologia e Immunologia Clinica, Università degli Studi di Torino, AO Ordine Mauriziano Umberto I di Torino, Torino, Italy
| |
Collapse
|
18
|
Henry Li H, Riedl M, Kashkin J. Update on the Use of C1-Esterase Inhibitor Replacement Therapy in the Acute and Prophylactic Treatment of Hereditary Angioedema. Clin Rev Allergy Immunol 2019; 56:207-218. [PMID: 29909591 DOI: 10.1007/s12016-018-8684-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the vast majority of patients with hereditary angioedema (HAE), angioedema attacks are due to the quantitative or functional deficiency of C1-esterase inhibitor (C1-INH), which leads to increased vascular permeability and unregulated release of bradykinin. Exogenous administration of C1-INH is a rational way to restore the concentration and functional activity of this protein, regulate the release of bradykinin, and attenuate or prevent subcutaneous and submucosal edema associated with HAE. Recent international guidelines for the management of HAE include C1-INH as an option for acute treatment of HAE. In addition, these guidelines recommend C1-INH as first-line treatment for long-term prophylaxis and as the therapy of choice for short-term/preprocedural prophylaxis. Several C1-INH products are available, with approved indications varying across regions. For the acute treatment of HAE, both plasma-derived and recombinant C1-INH formulations have been shown to be effective and well tolerated in adolescents and adults with HAE, with onset of relief within 30 min to a few hours. Plasma-derived C1-INH is approved for use in children, and recombinant C1-INH is being evaluated in this population. Intravenous (IV) and subcutaneous (SC) formulations of C1-INH have been approved for routine prophylaxis to prevent HAE attacks in adolescents and adults. Both formulations when administered twice weekly have been shown to reduce the frequency and severity of HAE attacks. The SC formulation of C1-INH obviates the need for repeated venous access and may facilitate self-administration of HAE prophylaxis at home, as recommended in HAE treatment guidelines. As with most rare diseases, the costs of HAE treatment are high; however, the development of additional acute and prophylactic medications for HAE may result in competitive pricing and help drive down the costs of HAE treatment.
Collapse
Affiliation(s)
- H Henry Li
- Institute for Asthma and Allergy, P.C., 2 Wisconsin Cir, Suite 250, Chevy Chase, MD, 20815, USA.
| | - Marc Riedl
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego, 8899 University Center Lane, Suite 230, San Diego, CA, 92122, USA
| | - Jay Kashkin
- Allergy, Asthma and Immunology, 23-00 Route 208 South, Fair Lawn, NJ, 07410, USA
| |
Collapse
|
19
|
Perego F, Wu MA, Valerieva A, Caccia S, Suffritti C, Zanichelli A, Bergamaschini L, Cicardi M. Current and emerging biologics for the treatment of hereditary angioedema. Expert Opin Biol Ther 2019; 19:517-526. [DOI: 10.1080/14712598.2019.1595581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Maddalena A. Wu
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
- ASST Fatebenefratelli Sacco, Milan,
Italy
| | - Anna Valerieva
- Clinical Centre of Allergology, University Hospital “Alexandrovska”, Medical University of Sofia, Bulgaria
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
| | - Andrea Zanichelli
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
- ASST Fatebenefratelli Sacco, Milan,
Italy
| | - Luigi Bergamaschini
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
- Pio Albergo Trivulzio, Milan,
Italy
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan,
Italy
- ASST Fatebenefratelli Sacco, Milan,
Italy
| |
Collapse
|
20
|
Charest-Morin X, Betschel S, Borici-Mazi R, Kanani A, Lacuesta G, Rivard GÉ, Wagner E, Wasserman S, Yang B, Drouet C. The diagnosis of hereditary angioedema with C1 inhibitor deficiency: a survey of Canadian physicians and laboratories. Allergy Asthma Clin Immunol 2018; 14:83. [PMID: 30479631 PMCID: PMC6249925 DOI: 10.1186/s13223-018-0307-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is an autosomal dominant disease resulting in random and unpredictable attacks of swelling. The swelling in C1-INH-HAE is a result of impaired regulation of bradykinin production. The fact that the array of tests needed to diagnose HAE is not always available to the treating physicians is challenging for them and their patients. Methods The data for this article were extracted from two distinct surveys. The first survey was conducted among HAE treating physicians and aimed to determine the availability and utilization of the various assays performed to help the diagnosis of C1-INH-HAE. The second survey was conducted with the various laboratories across Canada that performs the assays used in the diagnosis of HAE. The aim of this survey was to determine the availability and profile of the various assays used in the diagnosis of C1-INH-HAE in Canada, thereby ultimately bringing a rational basis for the biological testing. Results C1-INH functional assay was widely available in Canada (93%), but was only offered by a small numbers of hospitals meaning that there could be longer delays in the analysis of these samples that may explain why the physicians expressed a lower level of confidence in this assay (59%). Antigenic C1-INH was available to the vast majority of the physicians treating C1-INH-HAE (93%) and was considered reliable by 96% of the respondents. Antigenic C4 was found available to all Canadian physicians and, although with limited specificity, was considered very reliable by all the participants. This study revealed that 81% of physicians were able to order the antigenic C1q and the confidence in this assay was moderate (70%). Concerning genetic testing, the survey revealed that most of the CHAEN members never had to or couldn't order this test. Conclusion This study highlights the need for improved education and knowledge exchange, about biological assays available to Canadian physicians and their performance in proper diagnosis of C1-INH-HAE to improve confidence and access to relevant tests.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- 1Department of Microbiology-Infectious Disease and Immunology, Laval University, Quebec, QC Canada
| | - Stephen Betschel
- 2Division of Clinical Immunology and Allergy, St. Michael's Hospital, University of Toronto, Toronto, ON Canada
| | - Rozita Borici-Mazi
- 3Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Canada
| | - Amin Kanani
- 4Division of Allergy and Immunology, Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gina Lacuesta
- 5Department of Medicine, Dalhousie University, Halifax, NS Canada
| | - Georges-Étienne Rivard
- 6Hematology/Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC Canada
| | - Eric Wagner
- 7Immunology and Histocompatibility Laboratory, CHU de Quebec, Laval University, Quebec, QC Canada
| | - Susan Wasserman
- 8Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Bill Yang
- 9University of Ottawa Medical School, Ottawa, ON Canada
| | - Christian Drouet
- 10GREPI EA7408, University Grenoble Alpes, Grenoble, France.,Filière de santé Maladies Rares Immuno-Hématologiques (MaRIH), CHU Grenoble Alpes, Grenoble, France.,12Present Address: INSERM U1016, Institut Cochin and Laboratoire d'Immunologie, Hôpital Cochin, AP-HP, Université Paris-Descartes, Paris, France
| |
Collapse
|
21
|
Pawaskar D, Tortorici MA, Zuraw B, Craig T, Cicardi M, Longhurst H, Li HH, Lumry WR, Martinez-Saguer I, Jacobs J, Bernstein JA, Riedl MA, Katelaris CH, Keith PK, Feussner A, Sidhu J. Population pharmacokinetics of subcutaneous C1-inhibitor for prevention of attacks in patients with hereditary angioedema. Clin Exp Allergy 2018; 48:1325-1332. [PMID: 29998524 DOI: 10.1111/cea.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-term prophylaxis with subcutaneous (SC) administration of a highly concentrated plasma-derived C1-esterase inhibitor (C1-INH) formulation was recently approved by the Food and Drug Administration for hereditary angioedema (HAE) attack prevention. OBJECTIVE To characterize the population pharmacokinetics of C1-INH (SC) (HAEGARDA® ; CSL Behring) in healthy volunteers and HAE patients, and assess the variability and influence of covariates on pharmacokinetics. METHODS C1-INH functional activity data obtained after administration of various C1-INH (intravenous; IV) and C1-INH (SC) doses from 1 study in healthy volunteers (n = 16) and 2 studies in subjects with HAE (n = 108) were pooled to develop a population pharmacokinetic model (NONMEM v7.2). Pharmacokinetic parameters derived from steady-state simulations based on the final model were also evaluated. RESULTS C1-INH functional activity following C1-INH (SC) administration was described by a linear one-compartment model with first-order absorption and elimination, with inter-individual variability in all parameters tested. The mean population bioavailability of C1-INH (SC), and pharmacokinetic parameters for clearance (CL), volume of distribution, and absorption rate were estimated to be ~43%, 1.03 mL/hour/kg, 0.05 L/kg and 0.0146 hour-1 , respectively. The effect of bodyweight on CL of C1-INH functional activity was included in the final model, estimated to be 0.74. Steady-state simulations of C1-INH functional activity vs time profiles in 1000 virtual HAE patients revealed higher minimum functional activity (Ctrough ) levels after twice-weekly dosing with 40 IU/kg (~40%) and 60 IU/kg (~48%) compared with 1000 IU IV (~30%). Based on the population pharmacokinetic model, the median time to peak concentration was ~59 hours and the median apparent plasma half-life was ~69 hours. CONCLUSIONS AND CLINICAL RELEVANCE Twice-weekly bodyweight-adjusted dosing of C1-INH (SC) exhibits linear pharmacokinetics and dose-dependent increases in Ctrough levels at each dosing interval. In this analysis, SC dosing led to maintenance of higher Ctrough levels than IV dosing.
Collapse
Affiliation(s)
| | | | - Bruce Zuraw
- Department of Medicine, University of California San Diego and San Diego VA Healthcare, La Jolla, California
| | - Timothy Craig
- Department of Medicine, Pediatrics and Graduate Studies, Penn State University, Hershey, Pennsylvania
| | - Marco Cicardi
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi Di Milano, Milan, Italy
| | - Hilary Longhurst
- Addenbrookes Hospital, Cambridge Universities NHS Foundation Trust, Cambridge, UK
| | - H Henry Li
- Institute for Asthma and Allergy, Chevy Chase, Maryland
| | - William R Lumry
- AARA Research CenterAllergy and Asthma Specialists, Dallas, Texas
| | | | - Joshua Jacobs
- Allergy and Asthma Clinical Research Walnut Creek, Walnut Creek, California
| | - Jonathan A Bernstein
- Department of Immunology/Allergy, University of Cincinnati College of Medicine and Bernstein Clinical Research Center, Cincinnati, Ohio
| | - Marc A Riedl
- Department of Medicine, Division of Rheumatology, Allergy & Immunology, University of California San Diego, San Diego, California
| | - Constance H Katelaris
- Department of Medicine, Campbelltown Hospital, Western Sydney University, Sydney, New South Wales, Australia
| | - Paul K Keith
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
22
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Balle Boysen H, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2017 revision and update. Allergy 2018; 73:1575-1596. [PMID: 29318628 DOI: 10.1111/all.13384] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/25/2022]
Abstract
Hereditary Angioedema (HAE) is a rare and disabling disease. Early diagnosis and appropriate therapy are essential. This update and revision of the global guideline for HAE provides up-to-date consensus recommendations for the management of HAE. In the development of this update and revision of the guideline, an international expert panel reviewed the existing evidence and developed 20 recommendations that were discussed, finalized and consented during the guideline consensus conference in June 2016 in Vienna. The final version of this update and revision of the guideline incorporates the contributions of a board of expert reviewers and the endorsing societies. The goal of this guideline update and revision is to provide clinicians and their patients with guidance that will assist them in making rational decisions in the management of HAE with deficient C1-inhibitor (type 1) and HAE with dysfunctional C1-inhibitor (type 2). The key clinical questions covered by these recommendations are: (1) How should HAE-1/2 be defined and classified?, (2) How should HAE-1/2 be diagnosed?, (3) Should HAE-1/2 patients receive prophylactic and/or on-demand treatment and what treatment options should be used?, (4) Should HAE-1/2 management be different for special HAE-1/2 patient groups such as pregnant/lactating women or children?, and (5) Should HAE-1/2 management incorporate self-administration of therapies and patient support measures?
Collapse
Affiliation(s)
- M. Maurer
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - M. Magerl
- Department of Dermatology and Allergy; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - I. Ansotegui
- Department of Allergy and Immunology; Hospital Quironsalud Bizkaia; Bilbao Spain
| | - E. Aygören-Pürsün
- Center for Children and Adolescents; University Hospital Frankfurt; Frankfurt Germany
| | - S. Betschel
- Division of Clinical Immunology and Allergy; St. Michael's Hospital; University of Toronto; Toronto ON Canada
| | - K. Bork
- Department of Dermatology; Johannes Gutenberg University Mainz; Mainz Germany
| | - T. Bowen
- Department of Medicine and Pediatrics; University of Calgary; Calgary AB Canada
| | | | - H. Farkas
- Hungarian Angioedema Center; 3rd Department of Internal Medicine; Semmelweis University; Budapest Hungary
| | - A. S. Grumach
- Clinical Immunology; Faculdade de Medicina ABC; São Paulo Brazil
| | - M. Hide
- Department of Dermatology; Hiroshima University; Hiroshima Japan
| | - C. Katelaris
- Department of Medicine; Campbelltown Hospital and Western Sydney University; Sydney NSW Australia
| | - R. Lockey
- Department of Internal Medicine; University of South Florida Morsani College of Medicine; Tampa FL USA
| | - H. Longhurst
- Department of Clinical Biochemistry and Immunology; Addenbrooke's Hospital; Cambridge University Hospitals NHS Foundation Trust; UK
| | - W. R. Lumry
- Department of Internal Medicine; Allergy/Immunology Division; Southwestern Medical School; University of Texas; Dallas TX USA
| | | | - D. Moldovan
- University of Medicine and Pharmacy; Tîrgu Mures Romania
| | - A. Nast
- Berlin Institute of Health; Department of Dermatology, Venereology und Allergy; Division of Evidence based Medicine (dEBM); Corporate Member of Freie Universität Berlin; Humboldt-Universität zu Berlin; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - R. Pawankar
- Department of Pediatrics; Nippon Medical School; Tokyo Japan
| | - P. Potter
- Department of Medicine; University of Cape Town; Cape Town South Africa
| | - M. Riedl
- Department of Medicine; University of California-San Diego; La Jolla CA USA
| | - B. Ritchie
- Division of Hematology; University of Alberta; Edmonton AB Canada
| | - L. Rosenwasser
- Allergy and Immunology Department; University of Missouri at Kansas City School of Medicine; Kansas City MO USA
| | - M. Sánchez-Borges
- Allergy and Clinical Immunology Department; Centro Medico Docente La Trinidad; Caracas Venezuela
| | - Y. Zhi
- Department of Allergy; Peking Union Medical College Hospital and Chinese Academy of Medical Sciences; Beijing China
| | - B. Zuraw
- Department of Medicine; University of California-San Diego; La Jolla CA USA
- San Diego VA Healthcare; San Diego CA USA
| | - T. Craig
- Department of Medicine and Pediatrics; Penn State University; Hershey PA USA
| |
Collapse
|
23
|
Abstract
Remarkable progress has been made in the treatment of bradykinin-mediated angioedema with the advent of multiple new therapies. Patients now have effective medications available for prophylaxis and treatment of acute attacks. However, hereditary angioedema is a burdensome disease that can lead to debilitating and dangerous angioedema episodes associated with significant costs for individuals and society. The burden of treatment must be addressed regarding medication administration difficulties, treatment complications, and adverse side effects. New therapies are being investigated and may offer solutions to these challenges. This article reviews the emerging therapeutic options for the treatment of HAE.
Collapse
|
24
|
Bernstein JA. Human plasma-derived C1 esterase inhibitor for on-demand or prophylaxis treatment of patients with hereditary angioedema: intravenous and subcutaneous formulations. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1441022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jonathan A. Bernstein
- Department of Internal Medicine, Division of Immunology, Allergy Section, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
25
|
Maurer M, Magerl M, Ansotegui I, Aygören-Pürsün E, Betschel S, Bork K, Bowen T, Boysen HB, Farkas H, Grumach AS, Hide M, Katelaris C, Lockey R, Longhurst H, Lumry WR, Martinez-Saguer I, Moldovan D, Nast A, Pawankar R, Potter P, Riedl M, Ritchie B, Rosenwasser L, Sánchez-Borges M, Zhi Y, Zuraw B, Craig T. The international WAO/EAACI guideline for the management of hereditary angioedema – the 2017 revision and update. World Allergy Organ J 2018. [DOI: 10.1186/s40413-017-0180-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Cicardi M, Craig T, Magerl M, Zuraw B. Hereditary Angioedema: The Dawn of a New Era of Hereditary Angioedema Management. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10312243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This symposium provided an overview of past, current, and future therapies and routes of administration for patients with hereditary angioedema (HAE). Prof Cicardi opened the symposium by welcoming attendees and introducing the main topics of the session. Prof Magerl then focussed on treatments that are currently used for acute and prophylactic management of patients with HAE and highlighted that there is an unmet medical need in terms of better prophylactic treatment options. Prof Craig summarised the clinical evidence gathered over the last decades and shared the key findings and insights that led to our current understanding of the disease and laid the foundations for current and future treatment approaches. Prof Zuraw presented the findings from the pivotal Phase III COMPACT trial that explored the efficacy and safety of a self-administered subcutaneous (SC) nanofiltered C1-esterase inhibitor concentrate (C1-INH[SC]) for the prevention of HAE attacks.
Collapse
Affiliation(s)
- Marco Cicardi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Timothy Craig
- Division of Pulmonary, Allergy and Critical Care, Penn State University, Pennsylvania, USA
| | - Markus Magerl
- Department of Dermatology and Allergy, Charité University, Berlin, Germany
| | - Bruce Zuraw
- Division of Rheumatology, Allergy and Immunology, UC San Diego, San Diego, California, USA
| |
Collapse
|
27
|
Composition and Function of the Interstitial Fluid. Protein Sci 2016. [DOI: 10.1201/9781315374307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
|
29
|
Bork K. A Decade of Change: Recent Developments in Pharmacotherapy of Hereditary Angioedema (HAE). Clin Rev Allergy Immunol 2016; 51:183-92. [DOI: 10.1007/s12016-016-8544-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Engel R, Rensink I, Roem D, Brouwer M, Kalei A, Perry D, Zeerleder S, Wouters D, Hamann D. ELISA to measure neutralizing capacity of anti-C1-inhibitor antibodies in plasma of angioedema patients. J Immunol Methods 2015; 426:114-9. [DOI: 10.1016/j.jim.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
|
31
|
Nasr IH, Manson AL, Al Wahshi HA, Longhurst HJ. Optimizing hereditary angioedema management through tailored treatment approaches. Expert Rev Clin Immunol 2015; 12:19-31. [PMID: 26496459 DOI: 10.1586/1744666x.2016.1100963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary angioedema (HAE) is a rare but serious and potentially life threatening autosomal dominant condition caused by low or dysfunctional C1 esterase inhibitor (C1-INH) or uncontrolled contact pathway activation. Symptoms are characterized by spontaneous, recurrent attacks of subcutaneous or submucosal swellings typically involving the face, tongue, larynx, extremities, genitalia or bowel. The prevalence of HAE is estimated to be 1:50,000 without known racial differences. It causes psychological stress as well as significant socioeconomic burden. Early treatment and prevention of attacks are associated with better patient outcome and lower socioeconomic burden. New treatments and a better evidence base for management are emerging which, together with a move from hospital-centered to patient-centered care, will enable individualized, tailored treatment approaches.
Collapse
Affiliation(s)
- Iman H Nasr
- a Department of Immunology, Barts Health NHS Trust , London , UK
| | - Ania L Manson
- a Department of Immunology, Barts Health NHS Trust , London , UK
| | | | | |
Collapse
|
32
|
Abstract
Complement is a key component of immunity with crucial inflammatory and opsonic properties; inappropriate activation of complement triggers or exacerbates inflammatory disease. Complement dysregulation is a core feature of some diseases and contributes to pathology in many others. Approved agents have been developed for and are highly effective in some orphan applications, but their progress to use in more common diseases has been slow. Numerous challenges, such as target concentration or high turnover, limit the efficacy of these agents in humans. Numerous novel agents targeting different parts of the complement system in different ways are now emerging from pre-clinical studies and are entering Phase I/II trials; these agents bring the potential for more-effective and more-specific anti-complement therapies in disease. Other agents, both biologic and small molecule, are in Phase II or III trials for both rare and common diseases — administration routes include localized (for example, intravitreal) and systemic routes. There is an urgent need to develop biomarkers and imaging methods that enable monitoring of the effects and efficacy of anti-complement agents.
The complement cascade, a key regulator of innate immunity, is a rich source of potential therapeutic targets for diseases including autoimmune, inflammatory and degenerative disorders. Morgan and Harris discuss the progress made in modulating the complement system and the existing challenges, including dosing, localization of the drug to the target and how to interfere with protein–protein interactions. The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies.
Collapse
|
33
|
Zuraw BL, Cicardi M, Longhurst HJ, Bernstein JA, Li HH, Magerl M, Martinez‐Saguer I, Rehman SMM, Staubach P, Feuersenger H, Parasrampuria R, Sidhu J, Edelman J, Craig T. Phase II study results of a replacement therapy for hereditary angioedema with subcutaneous C1-inhibitor concentrate. Allergy 2015; 70:1319-28. [PMID: 26016741 PMCID: PMC4755045 DOI: 10.1111/all.12658] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) due to C1 inhibitor deficiency manifests as recurrent swelling attacks that can be disabling and sometimes fatal. Long-term prophylaxis with twice-weekly intravenous injections of plasma-derived C1-inhibitor (pdC1-INH) has been established as an effective treatment. Subcutaneous (SC) administration of pdC1-INH has not been studied in patients with HAE. METHODS This open-label, dose-ranging, crossover study (COMPACT Phase II) was conducted in 18 patients with type I or II HAE who received two of twice-weekly 1500, 3000, or 6000 IU SC doses of highly concentrated volume-reduced CSL830 for 4 weeks each. The mean trough plasma levels of C1-INH functional activity, C1-INH and C4 antigen levels during Week 4, and overall safety and tolerability were evaluated. The primary outcome was model-derived steady-state trough C1-INH functional activity. RESULTS After SC CSL830 administration, a dose-dependent increase in trough functional C1-INH activity was observed. C1-INH and C4 levels both increased. The two highest dose groups (3000 and 6000 IU) achieved constant C1-INH activity levels above 40% values, a threshold that was assumed to provide clinical protection against angioedema attacks. Compared with intravenous injection, pdC1-INH SC injection with CSL830 showed a lower peak-to-trough ratio and more consistent exposures. All doses were well tolerated. Mild-to-moderate local site reactions were noted with pain and swelling being the most common adverse event. CONCLUSIONS Subcutaneous volume-reduced CSL830 was well tolerated and led to a dose-dependent increase in physiologically relevant functional C1-INH plasma levels. A clinical outcome study of SC CSL830 in patients with HAE warrants further investigation.
Collapse
Affiliation(s)
- B. L. Zuraw
- Department of Medicine University of California, San Diego La Jolla CA USA
| | - M. Cicardi
- Department of Internal Medicine Universita degli Studi di Milano Ospedale L. Sacco Milan Italy
| | | | - J. A. Bernstein
- Department of Immunology/Allergy University of Cincinnati College of Medicine Cincinnati OH USA
| | - H. H. Li
- Institute for Asthma and Allergy Chevy Chase MD USA
| | - M. Magerl
- Charité, Universitätsmedizin Berlin Berlin Germany
| | | | | | | | | | | | - J. Sidhu
- CSL Limited Parkville Vic. Australia
| | | | - T. Craig
- Departments of Medicine and Pediatrics Penn State University Hershey PA USA
| |
Collapse
|
34
|
Currently available treatments and future treatment options for hereditary angioedema. ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Weller K, Krüger R, Maurer M, Magerl M. Subcutaneous self-injections of C1 inhibitor: an effective and safe treatment in a patient with hereditary angio-oedema. Clin Exp Dermatol 2015; 41:91-3. [PMID: 26011518 DOI: 10.1111/ced.12681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 11/27/2022]
Abstract
A 25-year-old woman presented to our clinic with a history of recurrent swelling and abdominal symptoms for > 20 years. The patient's father was similarly affected. The patient was diagnosed with hereditary angio-oedema (HAE) due to C1 inhibitor deficiency. This was initially managed with systemic androgens, but the symptoms of hyperandrogenism eventually became intolerable. Treatment with icatibant (an antagonist of bradykinin B2 receptors) was partially successful. We changed the therapy to prophylactic treatment with C1 inhibitor. Although the patient became completely symptom-free under this regimen, she found the repeated intravenous injections unacceptable. Therefore, we changed the route of administration to subcutaneous injections of C1 inhibitor 1000 U in 10 mL twice weekly, using a subcutaneous infusion kit. Since that time (December 2013), she has remained completely free of symptoms under this regimen. To our knowledge, this is the first report documenting the efficacy and safety of subcutaneous injections of C1 inhibitor in a patient with HAE.
Collapse
Affiliation(s)
- K Weller
- Department of Dermatology and Allergy, Charité Universitätsmedizin, Berlin, Germany
| | - R Krüger
- Department of Pediatrics, Charité Universitätsmedizin, Berlin, Germany
| | - M Maurer
- Department of Dermatology and Allergy, Charité Universitätsmedizin, Berlin, Germany
| | - M Magerl
- Department of Dermatology and Allergy, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
36
|
Albert-Weissenberger C, Mencl S, Schuhmann MK, Salur I, Göb E, Langhauser F, Hopp S, Hennig N, Meuth SG, Nolte MW, Sirén AL, Kleinschnitz C. C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation. Front Cell Neurosci 2014; 8:269. [PMID: 25249935 PMCID: PMC4158993 DOI: 10.3389/fncel.2014.00269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/19/2014] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.
Collapse
Affiliation(s)
| | - Stine Mencl
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | | | - Irmak Salur
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | - Eva Göb
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | | | - Sarah Hopp
- Department of Neurology, University Hospital Würzburg Würzburg, Germany
| | - Nelli Hennig
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster Münster, Germany ; Institute of Physiology I - Neuropathophysiology, University of Münster Münster, Germany
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg Würzburg, Germany
| | | |
Collapse
|