1
|
Kiely P, Seed CR, Gambhir M, Cheng AC, McQuilten ZK, Wood EM. West Nile virus transfusion-transmission risk in Australia associated with a seasonal outbreak in the United States. Transfusion 2022; 62:2291-2296. [PMID: 36120961 DOI: 10.1111/trf.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND West Nile virus (WNV) is a potentially transfusion-transmissible virus endemic in the US. The aim of this study was to estimate the monthly WNV transfusion transmission (TT) risk in Australia associated with donors returning from the US in 2018 and consider the implications for mitigation strategies. STUDY DESIGN AND METHODS We used a probabilistic risk model to estimate the monthly WNV TT risks for each outbreak state/district in the US for the 2018 transmission season and the cumulative monthly risk for all US states/districts. RESULTS The highest monthly cumulative transfusion risk in Australia occurred in August 2018 when 746 West Nile neuroinvasive disease cases were reported in the US and the estimated mean WNV TT risk in Australia was 1 in 1.0 × 108 donations (95% confidence interval [CI]: 1.6 × 108 -7.0 × 107 ). The highest risk during August was associated with California, with a mean risk of 1 in 4.1 × 108 donations (95% CI: 2.9 × 108 -6.6 × 108 ), representing 24% of the total risk in Australia. The cumulative TT risk in Australia for the other 11 months varied from 1 in 1.5 × 108 donations (95% CI: 2.3 × 108 -1.0 × 108 ) in September to 1 in 3.9 × 1010 donations (95% CI: 6.1 × 1010 -2.7 × 1010 ) in February. DISCUSSION Our modeling indicates that the WNV TT risk in Australia associated with seasonal outbreaks in the US is extremely small and may not warrant donation restrictions for donors returning from the US.
Collapse
Affiliation(s)
- Philip Kiely
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, Victoria, Australia.,Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia
| | - Clive R Seed
- Clinical Services and Research, Australian Red Cross Lifeblood, West Melbourne, Victoria, Australia
| | - Manoj Gambhir
- Center for Observational and Real World Evidence, MSD Australia, Melbourne, Victoria, Australia
| | - Allen C Cheng
- Department of Infectious Diseases, The Alfred and Central Clinical School, Monash University, Prahan, Victoria, Australia
| | - Zoe K McQuilten
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia
| | - Erica M Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Prahran, Victoria, Australia
| |
Collapse
|
2
|
Kiely P, Seed CR, Hoad VC, Gambhir M, Cheng AC, McQuilten ZK, Wood EM. Modeling the West Nile virus transfusion transmission risk in a nonoutbreak country associated with traveling donors. Transfusion 2020; 60:2611-2621. [PMID: 32869276 DOI: 10.1111/trf.16060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-borne virus and transfusion transmission (TT) has been demonstrated. The European Union and neighboring countries experience an annual transmission season. STUDY DESIGN AND METHODS We developed a novel probabilistic model to estimate the WNV TT risk in Australia attributable to returned donors who had travelled to the European Union and neighboring countries during the 2018. We estimated weekly WNV TT risks in Australia for each outbreak country and the cumulative risk for all countries. RESULTS Highest mean weekly TT risk in Australia attributable to donors returning from a specific outbreak country was 1 in 23.3 million (plausible range, 16.8-41.9 million) donations during Week 39 in Croatia. Highest mean weekly cumulative TT risk was 1 in 8.5 million donations (plausible range, 5.1-17.8 million) during Week 35. CONCLUSIONS The estimated TT risk in Australia attributable to returning donors from the European Union and neighboring countries in 2018 was very small, and additional risk mitigation strategies were not indicated. In the context of such low TT risks, a simpler but effective approach would be to monitor the number of weekly reported West Nile fever cases and implement risk modeling only when the reported cases reached a predefined number or trigger point.
Collapse
Affiliation(s)
- Philip Kiely
- Clinical Services and Research, Australian Red Cross Lifeblood, South Melbourne, Victoria, Australia.,Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Clive R Seed
- Clinical Services and Research, Australian Red Cross Lifeblood, South Melbourne, Victoria, Australia
| | - Veronica C Hoad
- Clinical Services and Research, Australian Red Cross Lifeblood, South Melbourne, Victoria, Australia
| | - Manoj Gambhir
- IBM Research Australia, Melbourne, Victoria, Australia
| | - Allen C Cheng
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Zoe K McQuilten
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Erica M Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Viennet E, Frentiu FD, Williams CR, Mincham G, Jansen CC, Montgomery BL, Flower RLP, Faddy HM. Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. PLoS Negl Trop Dis 2020; 14:e0008438. [PMID: 32663213 PMCID: PMC7380650 DOI: 10.1371/journal.pntd.0008438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/24/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Since 2015, Zika virus (ZIKV) outbreaks have occurred in the Americas and the Pacific involving mosquito-borne and sexual transmission. ZIKV has also emerged as a risk to global blood transfusion safety. Aedes aegypti, a mosquito well established in north and some parts of central and southern Queensland, Australia, transmits ZIKV. Aedes albopictus, another potential ZIKV vector, is a threat to mainland Australia. Since these conditions create the potential for local transmission in Australia and a possible uncertainty in the effectiveness of blood donor risk-mitigation programs, we investigated the possible impact of mosquito-borne and sexual transmission of ZIKV in Australia on local blood transfusion safety. METHODOLOGY/PRINCIPAL FINDINGS We estimated 'best-' and 'worst-' case scenarios of monthly reproduction number (R0) for both transmission pathways of ZIKV from 1996-2015 in 11 urban or regional population centres, by varying epidemiological and entomological estimates. We then estimated the attack rate and subsequent number of infectious people to quantify the ZIKV transfusion-transmission risk using the European Up-Front Risk Assessment Tool. For all scenarios and with both vector species R0 was lower than one for ZIKV transmission. However, a higher risk of a sustained outbreak was estimated for Cairns, Rockhampton, Thursday Island, and theoretically in Darwin during the warmest months of the year. The yearly estimation of the risk of transmitting ZIKV infection by blood transfusion remained low through the study period for all locations, with the highest potential risk estimated in Darwin. CONCLUSIONS/SIGNIFICANCE Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from infectious disease outbreak regions to source plasma collection provides a simple and effective risk management approach. However, if local transmission was suspected in the main urban centres of Australia, potentially facilitated by the geographic range expansion of Ae. aegypti or Ae. albopictus, this mitigation strategy would need urgent review.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- * E-mail:
| | - Francesca D. Frentiu
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Craig R. Williams
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Gina Mincham
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Cassie C. Jansen
- Communicable Diseases Branch, Queensland Department of Health, Herston, Queensland, Australia
| | - Brian L. Montgomery
- Metro South Public Health Unit, Metro South Hospital and Health Service, Brisbane, Queensland, Australia
| | - Robert L. P. Flower
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Helen M. Faddy
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
4
|
Coghlan A, Hoad VC, Seed CR, Flower RL, Harley RJ, Herbert D, Faddy HM. Emerging infectious disease outbreaks: estimating disease risk in Australian blood donors travelling overseas. Vox Sang 2017; 113:21-30. [PMID: 29052242 DOI: 10.1111/vox.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES International travel assists spread of infectious pathogens. Australians regularly travel to South-eastern Asia and the isles of the South Pacific, where they may become infected with infectious agents, such as dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) viruses that pose a potential risk to transfusion safety. In Australia, donors are temporarily restricted from donating for fresh component manufacture following travel to many countries, including those in this study. We aimed to estimate the unmitigated transfusion-transmission (TT) risk from donors travelling internationally to areas affected by emerging infectious diseases. MATERIALS AND METHODS We used the European Up-Front Risk Assessment Tool, with travel and notification data, to estimate the TT risk from donors travelling to areas affected by disease outbreaks: Fiji (DENV), Bali (DENV), Phuket (DENV), Indonesia (CHIKV) and French Polynesia (ZIKV). RESULTS We predict minimal risk from travel, with the annual unmitigated risk of an infected component being released varying from 1 in 1·43 million to <1 in one billion and the risk of severe consequences ranging from 1 in 130 million to <1 in one billion. CONCLUSION The predicted unmitigated likelihood of infection in blood components manufactured from donors travelling to the above-mentioned areas was very low, with the possibility of severe consequences in a transfusion recipient even smaller. Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from select infectious disease outbreak areas to source plasma collection provides a simple and effective risk management approach.
Collapse
Affiliation(s)
- A Coghlan
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - V C Hoad
- Medical Services, Australian Red Cross Blood Service, Perth, WA, Australia
| | - C R Seed
- Medical Services, Australian Red Cross Blood Service, Perth, WA, Australia
| | - R Lp Flower
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - R J Harley
- Medical Services, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - D Herbert
- Medical Services, Australian Red Cross Blood Service, Melbourne, VIC, Australia
| | - H M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Lanteri MC, Kleinman SH, Glynn SA, Musso D, Keith Hoots W, Custer BS, Sabino EC, Busch MP. Zika virus: a new threat to the safety of the blood supply with worldwide impact and implications. Transfusion 2016; 56:1907-14. [PMID: 27282638 DOI: 10.1111/trf.13677] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Marion C Lanteri
- Blood Systems Research Institute and.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | | | - Simone A Glynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Didier Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Tahiti, French Polynesia
| | - W Keith Hoots
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Brian S Custer
- Blood Systems Research Institute and.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Ester C Sabino
- Departmento de Molestias Infecciosas e Parasitarias, Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Michael P Busch
- Blood Systems Research Institute and.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
6
|
Seed CR, Hoad VC, Faddy HM, Kiely P, Keller AJ, Pink J. Re-evaluating the residual risk of transfusion-transmitted Ross River virus infection. Vox Sang 2016; 110:317-23. [PMID: 26748600 DOI: 10.1111/vox.12372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 11/28/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Ross River virus (RRV) is an enveloped, RNA alphavirus in the same antigenic group as chikungunya virus. Australia records an annual average of 5000 laboratory-confirmed RRV infections. While RRV is currently geographically restricted to the Western Pacific, the capacity of arboviruses for rapid expansion is well established. The first case of RRV transfusion-transmission was recently described prompting a comprehensive risk assessment. MATERIALS AND METHODS To estimate the RRV residual risk, we applied laboratory-confirmed RRV notifications to two published models. This modelling generated point estimates for the risk of viraemia in the donor population, the risk of collecting a viraemic donation and the predicted number of infected components. RESULTS The EUFRAT model estimated the risk of infection in donors as one in 95 039 (one in 311 328 to one in 32 399) to one in 14 943 (one in 48 593 to one in 5094). The point estimate for collecting a RRV viraemic donation varied from one in 166 486 (one in 659 078 to one in 49 158) (annualized national risk) to one in 26 117 (one in 103 628 to one in 7729) (area of high transmission). The modelling predicted 8-11 RRV-infected labile blood components issued in Australia during a 1-year period. CONCLUSION Considering the uncertainty in the modelled estimates, the unknown rate of RRV donor viraemia and the low severity of any recipient RRV infection, additional risk management for RRV in Australia will initially be restricted to strengthening the messaging to donors regarding prompt reporting of any postdonation illnesses.
Collapse
Affiliation(s)
- C R Seed
- Australian Red Cross Blood Service, Perth, WA, Australia
| | - V C Hoad
- Australian Red Cross Blood Service, Perth, WA, Australia
| | - H M Faddy
- Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - P Kiely
- Australian Red Cross Blood Service, Melbourne, Vic., Australia
| | - A J Keller
- Australian Red Cross Blood Service, Perth, WA, Australia
| | - J Pink
- Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|