1
|
Key AM, Earley EJ, Tzounakas VL, Anastasiadi AT, Nemkov T, Stephenson D, Dzieciatkowska M, Reisz JA, Keele GR, Deng X, Stone M, Kleinman S, Hansen KC, Norris PJ, Busch MP, Roubinian N, Page GP, D’Alessandro A. Red blood cell urate levels are linked to hemolysis in vitro and post-transfusion as a function of donor sex, population and genetic polymorphisms in SLC2A9 and ABCG2. Transfusion 2025; 65:560-574. [PMID: 39828898 PMCID: PMC11925674 DOI: 10.1111/trf.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations. STUDY DESIGN AND METHODS Urate levels were measured in 13,091 RBC units from the REDS study. Characteristics tested included hemolysis parameters (spontaneous, osmotic, oxidative) at storage end and post-transfusion hemoglobin (Hb) increments in recipients. Donor demographics, urate levels, and genetic variants were analyzed for associations with these outcomes. RESULTS Elevated urate levels were linked to male sex, older age, high BMI, and Asian descent. Units with high urate levels exhibited increased spontaneous and osmotic hemolysis, while oxidative hemolysis was unaffected. Genetic variants in SLC2A9 (V282I) and ABCG2 (Q141K) were strongly associated with elevated urate, particularly in Asian donors. Post-transfusion analyses revealed that units from female donors carrying these variants were associated with reduced Hb increments, with up to a 31% reduction in efficacy. This effect was not observed in male donors. DISCUSSION RBC urate levels and genetic traits significantly impact storage quality and transfusion outcomes. These findings highlight the importance of donor molecular characteristics for optimizing transfusion strategies. Moreover, genetic and metabolic insights may inform donor recruitment efforts, providing health feedback to volunteers while ensuring effective transfusion products.
Collapse
Affiliation(s)
- Alicia M. Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric J. Earley
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Omix Technologies Inc, Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory R. Keele
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco CA, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco CA, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Grier P. Page
- Department of Biostatistics and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Omix Technologies Inc, Aurora, CO, USA
| |
Collapse
|
2
|
Nemkov T, Isiksacan Z, William N, Senturk R, Boudreau LE, Yarmush ML, Acker JP, D'Alessandro A, Usta OB. Supercooled storage of red blood cells slows down the metabolic storage lesion. RESEARCH SQUARE 2025:rs.3.rs-5256734. [PMID: 40060052 PMCID: PMC11888543 DOI: 10.21203/rs.3.rs-5256734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Red blood cell (RBC) transfusion, a life-saving intervention, is limited by reduced RBC potency over time. Cold storage at +4 °C for up to 42 days can reduce transfusion efficacy due to alterations termed the "storage lesion." Strategies to mitigate the storage lesion include alkaline additive solutions and supercooled storage to extend storage by reducing metabolic stresses. However, RBC metabolism during supercooled storage in standard or alkaline additives remains unstudied. This study, thus, investigated the impact of storage additives (alkaline E-Sol5 and standard SAGM) and temperatures (+4 °C, -4 °C, -8 °C) on RBC metabolism during 21- and 42-days storage using high-throughput metabolomics. RBCs stored with E-Sol5 showed increased glycolysis and higher ratios of reduced to oxidized glutathione compared to SAGM. Supercooled storage at -4 °C showed markedly lower hemolysis than -8°C, preserved adenylate pools, decreased glucose consumption, and reduced lactate accumulation and pentose phosphate pathway activation. The combination of supercooled storage and E-Sol5 helped to preserve ATP and 2,3-DPG reservoirs, while preventing catabolism and free fatty acid accumulation. While supercooled storage with E-Sol5 offers a promising alternative to standard storage, preserving RBC metabolic and functional quality, further research is necessary to validate and improve on these foundational findings.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 5612 AZ
| | - Luke E Boudreau
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA, 08854
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| |
Collapse
|
3
|
Prasad RR, Kumar S, Zhang H, Li M, Hu CJ, Riddle S, McKeon BA, Frid M, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Tuder RM, Stenmark KR. An intracellular complement system drives metabolic and proinflammatory reprogramming of vascular fibroblasts in pulmonary hypertension. JCI Insight 2025; 10:e184141. [PMID: 39946184 PMCID: PMC11949053 DOI: 10.1172/jci.insight.184141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
The complement system is central to the innate immune response, playing a critical role in proinflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the "complosome," in regulating cellular processes such as glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigated the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results revealed a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human samples and bovine models, both in vivo and in vitro. The finding of elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasized enhanced C3 activity. PH-Fibs exhibited notable metabolic reprogramming and increased levels of proinflammatory mediators such as MCP1, SDF1, IL-6, IL-13, and IL-33. Silencing CFD via shRNA reduced CFB activation and C3a production, while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD-knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD's crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Sushil Kumar
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Hui Zhang
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Min Li
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Brittany A. McKeon
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - M.G. Frid
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Rubin M. Tuder
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
- Department of Lung Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| |
Collapse
|
4
|
Izidoro MA, de Paula DDA, de Oliveira I, Latini FRM, Girão MJBC, Cortez AJP, Juliano L. Assessment of amino acids and metabolites in the supernatant of stored concentrates blood from sickle cell trait (SCT) and reference (non-SCT) donors. Vox Sang 2025; 120:39-46. [PMID: 39428582 DOI: 10.1111/vox.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Sickle cell trait (SCT) persons are significant donors, and discarding these blood units reduces their supplies, mainly in the third-world countries. This work focused on 12 metabolites associated with the red blood cell (RBC) storage lesion and 23 amino acids in the supernatants of packed RBC units from SCT and reference (non-SCT) donors stored in the same conditions. MATERIALS AND METHODS All samples of RBC concentrates were collected and separated from the storage of Colsan (Beneficient Association of Blood Collection), where they were routinely processed and separated as packed RBC units and stored in the refrigerator (2°-6°C). The supernatant samples of each packed RBC bag were separated by centrifugation at days 1, 7, 14, 21, 28 and 35 of storage and kept at -80°C till the metabolite analysis together. RESULTS The quantitation of metabolites and amino acids examined in the supernatant of SCT and reference donors showed no statistical differences along the cold storage. Lactic acid and malic acid releases occur in three phases during RBC storage. Basic and acid amino acids and corresponding amides have low and stable values during the first 14 days of storage, followed by a steep increase. CONCLUSION Our metabolomic results give elements that seem not to contraindicate the transfusion of RBC with SCT, besides its more structural fragility.
Collapse
Affiliation(s)
- Mario A Izidoro
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
| | - Daiane D A de Paula
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
| | - Ingrid de Oliveira
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
| | - Flávia R M Latini
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
| | - Manoel J B C Girão
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | - Afonso J P Cortez
- COLSAN-Beneficient Association of Blood Collection - Laboatory of Mass Spectrometry, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
D'Alessandro A. It's in your blood: The impact of age, sex, genetic factors and exposures on stored red blood cell metabolism. Transfus Apher Sci 2024; 63:104011. [PMID: 39423666 PMCID: PMC11606750 DOI: 10.1016/j.transci.2024.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transfusion of packed red blood cell (RBCs) saves millions of lives yearly worldwide, making packed RBCs the most commonly administered drug in hospitals after vaccines. However, not all blood units are created equal. By examining blood products as they age in blood banks, transfusion scientists are gaining insights into the intricacies of human chemical individuality as regulated by biological factors (such as sex, age, and body mass index), genetic and non-genetic factors like environmental, dietary, and other exposures. Here, we review recent literature on this topic, with an emphasis on studies linking genetic traits to the metabolic heterogeneity of blood products, the hemolytic propensity of stored RBCs, and transfusion outcomes in both healthy autologous and non-autologous patients requiring transfusion. Given the role of RBCs as a simplified model of eukaryotic cells, and RBC storage as a medically relevant application modeling erythrocyte responses to oxidant stress, these insights have the potential not only to guide the development of precision transfusion strategies, but also to identify novel mechanisms of RBC metabolic regulation relevant to responses to hypoxia and oxidant stress in human (patho)physiology.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Chae RC, Price AD, Baucom MR, Wattley LJ, Nguyen CQ, Goodman MD, Pritts TA. Porcine Packed Red Blood Cells Demonstrate a Distinct Red Blood Cell Storage Lesion. J Surg Res 2024; 303:396-404. [PMID: 39423732 DOI: 10.1016/j.jss.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION The red blood cell (RBC) storage lesion has been well described in mouse and human blood but not in swine. Understanding the porcine RBC storage lesion is necessary prior to evaluating transfusion of stored packed red blood cells (pRBCs) in polytrauma models. We hypothesized that porcine pRBCs would undergo a similar storage lesion severity after 42 d. METHODS Whole blood was collected from female Yorkshire pigs and pRBCs were isolated in additive storage solution 3. Female human whole blood was obtained from our local blood bank and pRBCs prepared. Human and porcine pRBCs were stored for 42 d and sampled weekly and evaluated for markers of the RBC storage lesion including biochemical measurements, eryptotic RBCs, band-3 expression, erythrocyte-derived microvesicles, and free hemoglobin concentrations. RESULTS Porcine pRBCs demonstrated a hematocrit similar to human pRBCs. Both human and porcine pRBC units developed a progressive storage lesion. However, over 42 d of storage, porcine pRBCs maintained their pH and had decreased glucose utilization. Porcine pRBCs also demonstrated decreased levels of eryptosis compared to human samples and generated less erythrocyte-derived microvesicles with lower free hemoglobin concentrations. CONCLUSIONS Porcine pRBCs stored in additive storage solution 3 demonstrate a progressive RBC storage lesion over 42 d of storage but with less severity than human controls. Given the differences in porcine erythrocyte metabolism, further study of the storage lesion in porcine blood is needed in addition to incorporating the use of stored porcine pRBCs in a swine model of hemorrhagic shock to more closely mimic clinical scenarios.
Collapse
Affiliation(s)
- Ryan C Chae
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Adam D Price
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew R Baucom
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lindsey J Wattley
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christopher Q Nguyen
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael D Goodman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Timothy A Pritts
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
7
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman ZB, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and genetic determinants of glycolysis: Phosphofructokinase isoforms boost energy status of stored red blood cells and transfusion outcomes. Cell Metab 2024; 36:1979-1997.e13. [PMID: 38964323 PMCID: PMC11374506 DOI: 10.1016/j.cmet.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary B Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krystalyn E Hudson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA.
| |
Collapse
|
8
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
9
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman Z, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and Genetic Determinants of Glycolysis: Phosphofructokinase Isoforms Boost Energy Status of Stored Red Blood Cells and Transfusion Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557250. [PMID: 38260479 PMCID: PMC10802247 DOI: 10.1101/2023.09.11.557250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria, and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in the blood bank. Here we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify an association between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs), hexokinase 1, ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice, and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine levels - and the genetic traits linked to them - were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes. eTOC and Highlights Highlights Blood donor age and sex affect glycolysis in stored RBCs from 13,029 volunteers;Ancestry, genetic polymorphisms in PFKP, HK1, CD38/BST1 influence RBC glycolysis;Modeled PFKP effects relate to preventing loss of the total AXP pool in stored RBCs;ATP and hypoxanthine are biomarkers of hemolysis in vitro and in vivo.
Collapse
|
10
|
Weaver AJ, McIntosh CS, Kelly SG, Barrera GD, Lizarraga S, Hildreth KE, Williams CE, Grantham L, Yoshida T, Omert L, Bynum JA, Meledeo MA, Reddoch-Cardenas KM. Evaluating the effects of hypoxic storage on platelet function and health using a novel storage system. Transfusion 2024; 64:693-704. [PMID: 38511850 DOI: 10.1111/trf.17784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Thousands of units of whole blood (WB) and blood components are transfused daily to treat trauma patients. Improved methods for blood storage are critical to support trauma-related care. The Hemanext ONE® system offers a unique method for hypoxic storage of WB, with successfully demonstrated storage of clinically viable RBCs. This work evaluated the system for the storage of WB, focusing on platelet health and function. STUDY DESIGN AND METHODS WB was collected from healthy donors and processed through the Hemanext ONE® system. Hemoglobin oxygen saturation (HbSO2) levels of WB were depleted to 10%, 20%, or 30% of total HbSO2 and then stored in PVC bags sealed in oxygen-impermeable bags (except for normoxic control) with samples collected on days 1, 7, and 14 post-processing. Flow cytometry assessed the activation and apoptosis of platelets. Clot dynamics were assessed based on aggregometry and thromboelastography assays, as well as thrombin generation using a calibrated-automated thrombogram method. RESULTS Hypoxic storage conditions were maintained throughout the storage period. Hypoxia triggered increased lactate production, but pH changes were negligible compared to normoxic control. Storage at 10% HbSO2 had a significant impact on platelet function, resulting in increased activation and reduced clot formation and aggregation. These effects were less significant at 20% and 30% HbSO2. DISCUSSION This study indicates that platelets are sensitive to hypoxic storage and suffer significant metabolic and functional deterioration when stored at or below 10% HbSO2.
Collapse
Affiliation(s)
- A J Weaver
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - C S McIntosh
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - S G Kelly
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - G D Barrera
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - S Lizarraga
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - K E Hildreth
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - C E Williams
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - L Grantham
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - T Yoshida
- Hemanext Inc., Lexington, Massachusetts, USA
| | - L Omert
- Hemanext Inc., Lexington, Massachusetts, USA
| | | | - M A Meledeo
- United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | |
Collapse
|
11
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
12
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Gu X, Allyn M, Swindle-Reilly K, Palmer AF. ZIF-8 metal organic framework nanoparticle loaded with tense quaternary state polymerized bovine hemoglobin: potential red blood cell substitute with antioxidant properties. NANOSCALE 2023; 15:8832-8844. [PMID: 37114464 DOI: 10.1039/d2nr06812e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to several limitations associated with blood transfusion, such as the relatively short shelf life of stored blood, low risk of developing acute immune hemolytic reactions and graft-versus-host disease, many strategies have been developed to synthesize hemoglobin-based oxygen carriers (HBOCs) as universal red blood cell (RBC) substitutes. Recently, zeolite imidazole framework-8 (ZIF-8), a metal-organic framework, has attracted considerable attention as a protective scaffold for encapsulation of hemoglobin (Hb). Despite the exceptional thermal and chemical stability of ZIF-8, the major impediments to implementing ZIF-8 for Hb encapsulation are the structural distortions associated with loading large quantities of Hb in the scaffold as the Hb molecule has a larger hydrodynamic diameter than the pore size of ZIF-8. Therefore to reduce the structural distortion caused by Hb encapsulation, we established and optimized a continuous-injection method to synthesize nanoparticle (NP) encapsulated polymerized bovine Hb (PolybHb) using ZIF-8 precursors (ZIF-8P-PolybHb NPs). The synthesis method was further modified by adding EDTA as a chelating agent, which reduced the ZIF-8P-PolybHb NP size to <300 nm. ZIF-8P-PolybHb NPs exhibited lower oxygen affinity (36.4 ± 3.2 mm Hg) compared to unmodified bovine Hb, but was similar in magnitude to unencapsulated PolybHb. The use of the chemical cross-linker glutaraldehyde to polymerize bovine Hb resulted in the low Hill coefficient of PolybHb, indicating loss of Hb's oxygen binding cooperativity, which could be a limitation when using PolybHb as an oxygen carrier for encapsulation inside the ZIF-8 matrix. ZIF-8P-PolybHb NPs exhibited slower oxygen offloading kinetics compared to unencapsulated PolybHb, demonstrating successful encapsulation of PolybHb. ZIF-8P-PolybHb NPs also exhibited favorable antioxidant properties when exposed to H2O2. Incorporation of PolybHb into the ZIF-8 scaffold resulted in reduced cytotoxicity towards human umbilical vein endothelial cells compared to unloaded ZIF-8 NPs and ZIF-8 NPs loaded with bovine Hb. We envisage that such a monodisperse and biocompatible HBOC with low oxygen affinity and antioxidant properties may broaden its use as an RBC substitute.
Collapse
Affiliation(s)
- Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Katelyn Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, 43212, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Nunns GR, Vigneshwar N, Kelher MR, Stettler GR, Gera L, Reisz JA, D’Alessandro A, Ryon J, Hansen KC, Burke T, Gamboni F, Moore EE, Peltz ED, Cohen MJ, Jones KL, Sauaia A, Liang X, Banerjee A, Ghasabyan A, Chandler JG, Rodawig S, Jones C, Eitel A, Hom P, Silliman CC. Succinate Activation of SUCNR1 Predisposes Severely Injured Patients to Neutrophil-mediated ARDS. Ann Surg 2022; 276:e944-e954. [PMID: 33214479 PMCID: PMC8128932 DOI: 10.1097/sla.0000000000004644] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Identify the metabolites that are increased in the plasma of severely injured patients that developed ARDS versus severely injured patients that did not, and assay if these increased metabolites prime pulmonary sequestration of neutrophils (PMNs) and induce pulmonary sequestration in an animal model of ARDS. We hypothesize that metabolic derangement due to advanced shock in critically injured patients leads to the PMNs, which serves as the first event in the ARDS. Summary of Background Data: Intracellular metabolites accumulate in the plasma of severely injured patients. METHODS Untargeted metabolomics profiling of 67 critically injured patients was completed to establish a metabolic signature associated with ARDS development. Metabolites that significantly increased were assayed for PMN priming activity in vitro. The metabolites that primed PMNs were tested in a 2-event animal model of ARDS to identify a molecular link between circulating metabolites and clinical risk for ARDS. RESULTS After controlling for confounders, 4 metabolites significantly increased: creatine, dehydroascorbate, fumarate, and succinate in trauma patients who developed ARDS ( P < 0.05). Succinate alone primed the PMN oxidase in vitro at physiologically relevant levels. Intravenous succinate-induced PMN sequestration in the lung, a first event, and followed by intravenous lipopolysaccharide, a second event, resulted in ARDS in vivo requiring PMNs. SUCNR1 inhibition abrogated PMN priming, PMN sequestration, and ARDS. Conclusion: Significant increases in plasma succinate post-injury may serve as the first event in ARDS. Targeted inhibition of the SUCNR1 may decrease ARDS development from other disease states to prevent ARDS globally.
Collapse
Affiliation(s)
- Geoffrey R Nunns
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Navin Vigneshwar
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Marguerite R Kelher
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
- Vitalant Research Institute, Vitalant Denver, Denver, CO
| | - Gregory R Stettler
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Lajos Gera
- Biochemistry and Molecular Genetics, School of Medicine University of Colorado, Aurora, CO
| | - Julie A. Reisz
- Biochemistry and Molecular Genetics, School of Medicine University of Colorado, Aurora, CO
| | - Angelo D’Alessandro
- Biochemistry and Molecular Genetics, School of Medicine University of Colorado, Aurora, CO
| | - Joshua Ryon
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Kirk C Hansen
- Biochemistry and Molecular Genetics, School of Medicine University of Colorado, Aurora, CO
| | - Timothy Burke
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
- Vitalant Research Institute, Vitalant Denver, Denver, CO
| | - Fabia Gamboni
- Biochemistry and Molecular Genetics, School of Medicine University of Colorado, Aurora, CO
| | - Ernest E. Moore
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
- Department of Surgery, Denver Health Medical Center, Denver, CO
| | - Erik D Peltz
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Mitchell J Cohen
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
- Department of Surgery, Denver Health Medical Center, Denver, CO
| | | | - Angela Sauaia
- Department of Surgery, Denver Health Medical Center, Denver, CO
- School of Public Health, University of Colorado, Aurora, CO
| | - Xiayuan Liang
- Pathology, School of Medicine, University of Colorado, Aurora, CO
| | - Anirban Banerjee
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Arsen Ghasabyan
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - James G Chandler
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Sophia Rodawig
- Vitalant Research Institute, Vitalant Denver, Denver, CO
- College of Arts and Letters, University of Notre Dame, Notre Dame, IL
| | - Carter Jones
- Vitalant Research Institute, Vitalant Denver, Denver, CO
- College of Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Andrew Eitel
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Patrick Hom
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
| | - Christopher C Silliman
- Department of Surgery, School of Medicine University of Colorado, Aurora, CO
- Pediatrics, School of Medicine University of Colorado, CO
- Vitalant Research Institute, Vitalant Denver, Denver, CO
| |
Collapse
|
15
|
Nikulina M, Nemkov T, D'Alessandro A, Gaccione P, Yoshida T. A deep 96-well plate RBC storage platform for high-throughput screening of novel storage solutions. Front Physiol 2022; 13:1004936. [PMID: 36277188 PMCID: PMC9583842 DOI: 10.3389/fphys.2022.1004936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Red blood cell (RBC) storage solutions, also known as additive solutions (ASs), first developed in the 1970s, enable extended storage of RBCs. Unfortunately, the advancements in this field have been limited, due to labor intensive and time-consuming serial in vitro and in vivo testing, coupled with very high commercialization hurdles. This study examines the utility of deep 96-well plates for preliminary screenings of novel ASs through comparison of RBC storage with the standard PVC bags in terms of hemolysis and ATP levels, under both normoxic (N) and hypoxic/hypocapnic (H) storage conditions. The necessity for the presence of DEHP, normally provided by PVC bags, is also examined. Materials and methods: A pool of 2 ABO compatible RBC units was split between a bag and a plate. Each plate well contained either 1, 2 or 0 PVC strips cut from standard storage bags to supply DEHP. The H bags and plates were processed in an anaerobic glovebox and stored in O2 barrier bags. Hemolysis and ATP were measured bi-weekly using standard methods. Results: Final ATP and hemolysis values for the plate-stored RBCs were comparable to the typical values observed for 6-week storage of leukoreduced AS-3 RBCs in PVC bags under both N and H conditions. Hemolysis was below FDA and EU benchmarks of 1% and 0.8%, respectively, and excluding DEHP from plates during storage, resulted in an inconsequential increase when compared to bag samples. Discussion: In combination with high-throughput metabolomics workflow, this platform provides a highly efficient preliminary screening platform to accelerate the initial testing and consequent development of novel RBC ASs.
Collapse
Affiliation(s)
| | - Travis Nemkov
- Omix Technologies, Aurora, CO, United States
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Omix Technologies, Aurora, CO, United States
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | |
Collapse
|
16
|
Ward AV, Matthews SB, Fettig LM, Riley D, Finlay-Schultz J, Paul KV, Jackman M, Kabos P, MacLean PS, Sartorius CA. Estrogens and Progestins Cooperatively Shift Breast Cancer Cell Metabolism. Cancers (Basel) 2022; 14:1776. [PMID: 35406548 PMCID: PMC8996926 DOI: 10.3390/cancers14071776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic reprogramming remains largely understudied in relation to hormones in estrogen receptor (ER) and progesterone receptor (PR) positive breast cancer. In this study, we investigated how estrogens, progestins, or the combination, impact metabolism in three ER and PR positive breast cancer cell lines. We measured metabolites in the treated cells using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Top metabolic processes upregulated with each treatment involved glucose metabolism, including Warburg effect/glycolysis, gluconeogenesis, and the pentose phosphate pathway. RNA-sequencing and pathway analysis on two of the cell lines treated with the same hormones, found estrogens target oncogenes, such as MYC and PI3K/AKT/mTOR that control tumor metabolism, while progestins increased genes associated with fatty acid metabolism, and the estrogen/progestin combination additionally increased glycolysis. Phenotypic analysis of cell energy metabolism found that glycolysis was the primary hormonal target, particularly for the progestin and estrogen-progestin combination. Transmission electron microscopy found that, compared to vehicle, estrogens elongated mitochondria, which was reversed by co-treatment with progestins. Progestins promoted lipid storage both alone and in combination with estrogen. These findings highlight the shift in breast cancer cell metabolism to a more glycolytic and lipogenic phenotype in response to combination hormone treatment, which may contribute to a more metabolically adaptive state for cell survival.
Collapse
Affiliation(s)
- Ashley V. Ward
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Shawna B. Matthews
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Lynsey M. Fettig
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| | - Kiran V. Paul
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Matthew Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.V.P.); (P.K.)
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.J.); (P.S.M.)
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.V.W.); (S.B.M.); (L.M.F.); (D.R.); (J.F.-S.)
| |
Collapse
|
17
|
Bertolone L, Shin HKH, Baek JH, Gao Y, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Guinea Pigs, Humans, and Non-human Primates During Refrigerated Storage for Up to 42 Days. Front Physiol 2022; 13:845347. [PMID: 35388289 PMCID: PMC8977988 DOI: 10.3389/fphys.2022.845347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Unlike other rodents, guinea pigs (Cavia porcellus) have evolutionarily lost their capacity to synthesize vitamin C (ascorbate) de novo and, like several non-human primates and humans, rely on dietary intake and glutathione-dependent recycling to cope with oxidant stress. This is particularly relevant in red blood cell physiology, and especially when modeling blood storage, which exacerbates erythrocyte oxidant stress. Herein we provide a comprehensive metabolomics analysis of fresh and stored guinea pig red blood cell concentrates (n = 20), with weekly sampling from storage day 0 through 42. Results were compared to previously published ZOOMICS studies on red blood cells from three additional species with genetic loss of L-gulonolactone oxidase function, including humans (n = 21), olive baboons (n = 20), and rhesus macaques (n = 20). While metabolic trends were comparable across all species, guinea pig red blood cells demonstrated accelerated alterations of the metabolic markers of the storage lesion that are consistent with oxidative stress. Compared to the other species, guinea pig red blood cells showed aberrant glycolysis, pentose phosphate pathway end product metabolites, purine breakdown products, methylation, glutaminolysis, and markers of membrane lipid remodeling. Consistently, guinea pig red blood cells demonstrated higher end storage hemolysis, and scanning electron microscopy confirmed a higher degree of morphological alterations of their red blood cells, as compared to the other species. Despite a genetic inability to produce ascorbate that is common to the species evaluated, guinea pig red blood cells demonstrate accelerated oxidant stress under standard storage conditions. These data may offer relevant insights into the basal and cold storage metabolism of red blood cells from species that cannot synthesize endogenous ascorbate.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye Kyung H Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
19
|
Comparison of Two Alternative Procedures to Obtain Packed Red Blood Cells for β-Thalassemia Major Transfusion Therapy. Biomolecules 2021; 11:biom11111638. [PMID: 34827635 PMCID: PMC8615631 DOI: 10.3390/biom11111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia major (βTM) patients require frequent blood transfusions, with consequences that span from allogenic reactions to iron overload. To minimize these effects, βTM patients periodically receive leucodepleted packed red blood cells (P-RBCs) stored for maximum 14 days. The aim of this study was to compare two alternative routine procedures to prepare the optimal P-RBCs product, in order to identify differences in their content that may somehow affect patients’ health and quality of life (QoL). In method 1, blood was leucodepleted and then separated to obtain P-RBCs, while in method 2 blood was separated and leucodepleted after removal of plasma and buffycoat. Forty blood donors were enrolled in two independent centers; couples of phenotypically matched whole blood units were pooled, divided in two identical bags and processed in parallel following the two methods. Biochemical properties, electrolytes and metabolic composition were tested after 2, 7 and 14 days of storage. Units prepared with both methods were confirmed to have all the requirements necessary for βTM transfusion therapy. Nevertheless, RBCs count and Hb content were found to be higher in method-1, while P-RBCs obtained with method 2 contained less K+, iron and storage lesions markers. Based on these results, both methods should be tested in a clinical perspective study to determine a possible reduction of transfusion-related complications, improving the QoL of βTM patients, which often need transfusions for the entire lifespan.
Collapse
|
20
|
Na J, Zhang J, Choe YL, Lim CS, Park YH. An in vitro study on the differentiated metabolic mechanism of chloroquine-resistant Plasmodium falciparum using high-resolution metabolomics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:859-874. [PMID: 34338159 DOI: 10.1080/15287394.2021.1944945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroquine (CQ) is an important drug used therapeutically for treatment of malaria. However, due to limited number of studies on metabolic targets of chloroquine (CQ), it is difficult to attribute mechanisms underlying resistance associated with usage of this drug. The present study aimed to investigate the metabolic signatures of CQ-resistant Plasmodium falciparum (PfDd2) compared to CQ-sensitive Plasmodium falciparum (Pf3D7). Both Pf3D7 and PfDd2 were treated with CQ at 200 nM for 48 hr; thereafter, the harvested red blood cells (RBCs) and media were subjected to microscopy and high-resolution metabolomics (HRM). Glutathione, γ-L-glutamyl-L-cysteine, spermidine, inosine monophosphate, alanine, and fructose-1,6-bisphosphate were markedly altered in PfDd2 of RBC. In the media, cysteine, cysteic acid, spermidine, phenylacetaldehyde, and phenylacetic acid were significantly altered in PfDd2. These differential metabolic signatures related signaling pathways of PfDd2, such as oxidative stress pathway and glycolysis may provide evidence for understanding the resistance mechanism and pathogenesis of the CQ-resistant parasite.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jian Zhang
- Omics Research Center, Sejong, Republic of Korea
| | - Young Lan Choe
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Youngja Hwang Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Sejong, Republic of Korea
| |
Collapse
|
21
|
Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, Cao P, Arias-Pulido H, Sidhu KS, Silverstrim B, Kam Y, Kelley S, Pereira M, Bates SE, Bunn JY, Fiering SN, Matthews DE, Robey RW, Stich D, D’Alessandro A, Rincon M. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun 2021; 12:2804. [PMID: 33990571 PMCID: PMC8121950 DOI: 10.1038/s41467-021-23071-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers.
Collapse
Affiliation(s)
- Emily L. Giddings
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Devin P. Champagne
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Meng-Han Wu
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Joshua M. Laffin
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Tina M. Thornton
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Felipe Valenca-Pereira
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Rachel Culp-Hill
- grid.430503.10000 0001 0703 675XDepartment of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Karen A. Fortner
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Natalia Romero
- grid.422638.90000 0001 2107 5309Cell Analysis Division, Agilent Technologies, Lexington, MA USA
| | - James East
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.59062.380000 0004 1936 7689Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Phoebe Cao
- grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Hugo Arias-Pulido
- grid.254880.30000 0001 2179 2404Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Karatatiwant S. Sidhu
- grid.59062.380000 0004 1936 7689Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Brian Silverstrim
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Yoonseok Kam
- grid.422638.90000 0001 2107 5309Cell Analysis Division, Agilent Technologies, Lexington, MA USA
| | - Shana Kelley
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Mark Pereira
- grid.17063.330000 0001 2157 2938Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON Canada
| | - Susan E. Bates
- grid.239585.00000 0001 2285 2675Division of Hematology/Oncology, Columbia University Medical Center, New York City, NY USA
| | - Janice Y. Bunn
- grid.59062.380000 0004 1936 7689Department of Medical Biostatistics, University of Vermont, Burlington, VT USA
| | - Steven N. Fiering
- grid.254880.30000 0001 2179 2404Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Dwight E. Matthews
- grid.59062.380000 0004 1936 7689Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Robert W. Robey
- grid.48336.3a0000 0004 1936 8075Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Domink Stich
- grid.430503.10000 0001 0703 675XAdvanced Light Microscopy Core, Neurotechnology Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Angelo D’Alessandro
- grid.430503.10000 0001 0703 675XDepartment of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| | - Mercedes Rincon
- grid.59062.380000 0004 1936 7689Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.430503.10000 0001 0703 675XDepartment of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
22
|
Rogers SC, Ge X, Brummet M, Lin X, Timm DD, d'Avignon A, Garbow JR, Kao J, Prakash J, Issaian A, Eisenmesser EZ, Reisz JA, D'Alessandro A, Doctor A. Quantifying dynamic range in red blood cell energetics: Evidence of progressive energy failure during storage. Transfusion 2021; 61:1586-1599. [PMID: 33830505 DOI: 10.1111/trf.16395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND During storage, red blood cells (RBCs) undergo significant biochemical and morphologic changes, referred to collectively as the "storage lesion". It was hypothesized that these defects may arise from disrupted oxygen-based regulation of RBC energy metabolism, with resultant depowering of intrinsic antioxidant systems. STUDY DESIGN AND METHODS As a function of storage duration, the dynamic range in RBC metabolic response to three models of biochemical oxidant stress (methylene blue, hypoxanthine/xanthine oxidase, and diamide) was assessed, comparing glycolytic flux by NMR and UHPLC-MS methodologies. Blood was processed/stored under standard conditions (AS-1 additive solution) with leukoreduction. Over a 6-week period, RBC metabolic and antioxidant status were assessed at baseline and following exposure to the three biochemical oxidant models. Comparison was made of glycolytic flux (1 H-NMR tracking of [2-13 C]-glucose and metabolomic phenotyping with [1,2,3-13 C3 ] glucose), reducing equivalent (NADPH/NADP+ ) recycling, and thiol-based (GSH/GSSG) antioxidant status. RESULTS As a function of storage duration, we observed the following: (1) a reduction in baseline hexose monophosphate pathway (HMP) flux, the sole pathway responsible for the regeneration of the essential reducing equivalent NADPH; with (2) diminished stress-based dynamic range in both overall glycolytic as well as proportional HMP flux. In addition, progressive with storage duration, RBCs showed (3) constraint in reducing equivalent (NADPH) recycling capacity, (4) loss of thiol based (GSH) recycling capacity, and (5) dysregulation of metabolon assembly at the cytoplasmic domain of Band 3 membrane protein (cdB3). CONCLUSION Blood storage disturbs normal RBC metabolic control, depowering antioxidant capacity and enhancing vulnerability to oxidative injury.
Collapse
Affiliation(s)
- Stephen C Rogers
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xia Ge
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Mary Brummet
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xue Lin
- Department of Pediatrics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - David D Timm
- Department of Pediatrics, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Andre d'Avignon
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Jeff Kao
- Department of Chemistry, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
| | - Jaya Prakash
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allan Doctor
- Department of Pediatrics, Divisions of Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,The Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Gómez-Archila LG, Palomino-Schätzlein M, Zapata-Builes W, Galeano E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS One 2021; 16:e0247668. [PMID: 33630921 PMCID: PMC7906414 DOI: 10.1371/journal.pone.0247668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
Collapse
Affiliation(s)
- León Gabriel Gómez-Archila
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | | | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medelín, Colombia
| | - Elkin Galeano
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
24
|
Mykhailova O, Olafson C, Turner TR, DʼAlessandro A, Acker JP. Donor-dependent aging of young and old red blood cell subpopulations: Metabolic and functional heterogeneity. Transfusion 2020; 60:2633-2646. [PMID: 32812244 DOI: 10.1111/trf.16017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Characteristics of red blood cells (RBCs) are influenced by donor variability. This study assessed quality and metabolomic variables of RBC subpopulations of varied biologic age in red blood cell concentrates (RCCs) from male and female donors to evaluate their contribution to the storage lesion. STUDY DESIGN AND METHODS Red blood cell concentrates from healthy male (n = 6) and female (n = 4) donors were Percoll separated into less dense ("young", Y-RCCs) and dense ("old", O-RCCs) subpopulations, which were assessed weekly for 28 days for changes in hemolysis, mean cell volume (MCV), hemoglobin concentration (MCHC), hemoglobin autofluorescence (HGB), morphology index (MI), oxygen affinity (p50), rigidity, intracellular reactive oxygen species (ROS), calcium ([Ca2+ ]), and mass spectrometry-based metabolomics. RESULTS Young RCCs having disc-to-discoid morphology showed higher MCV and MI, but lower MCHC, HGB, and rigidity than O-RCCs, having discoid-to-spheroid shape. By Day 14, Y-RCCs retained lower hemolysis and rigidity and higher p50 compared to O-RCCs. Donor sex analyses indicated that females had higher MCV, HGB, ROS, and [Ca2+ ] and lower hemolysis than male RBCs, in addition to having a decreased rate of change in hemolysis by Day 28. Metabolic profiling indicated a significant sex-related signature across all groups with increased markers of high membrane lipid remodeling and antioxidant capacity in Y-RCCs, whereas O-RCCs had increased markers of oxidative stress and decreased coping capability. CONCLUSION The structural, functional, and metabolic dissimilarities of Y-RCCs and O-RCCs from female and male donors demonstrate RCC heterogeneity, where RBCs from females contribute less to the storage lesion and age slower than males.
Collapse
Affiliation(s)
- Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Carly Olafson
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Tracey R Turner
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Angelo DʼAlessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
San-Millán I, Stefanoni D, Martinez JL, Hansen KC, D’Alessandro A, Nemkov T. Metabolomics of Endurance Capacity in World Tour Professional Cyclists. Front Physiol 2020; 11:578. [PMID: 32581847 PMCID: PMC7291837 DOI: 10.3389/fphys.2020.00578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
The study of elite athletes provides a unique opportunity to define the upper limits of human physiology and performance. Across a variety of sports, these individuals have trained to optimize the physiological parameters of their bodies in order to compete on the world stage. To characterize endurance capacity, techniques such as heart rate monitoring, indirect calorimetry, and whole blood lactate measurement have provided insight into oxygen utilization, and substrate utilization and preference, as well as total metabolic capacity. However, while these techniques enable the measurement of individual, representative variables critical for sports performance, they lack the molecular resolution that is needed to understand which metabolic adaptations are necessary to influence these metrics. Recent advancements in mass spectrometry-based analytical approaches have enabled the measurement of hundreds to thousands of metabolites in a single analysis. Here we employed targeted and untargeted metabolomics approaches to investigate whole blood responses to exercise in elite World Tour (including Tour de France) professional cyclists before and after a graded maximal physiological test. As cyclists within this group demonstrated varying blood lactate accumulation as a function of power output, which is an indicator of performance, we compared metabolic profiles with respect to lactate production to identify adaptations associated with physiological performance. We report that numerous metabolic adaptations occur within this physically elite population (n = 21 males, 28.2 ± 4.7 years old) in association with the rate of lactate accumulation during cycling. Correlation of metabolite values with lactate accumulation has revealed metabolic adaptations that occur in conjunction with improved endurance capacity. In this population, cycling induced increases in tricarboxylic acid (TCA) cycle metabolites and Coenzyme A precursors. These responses occurred proportionally to lactate accumulation, suggesting a link between enhanced mitochondrial networks and the ability to sustain higher workloads. In association with lactate accumulation, altered levels of amino acids before and after exercise point to adaptations that confer unique substrate preference for energy production or to promote more rapid recovery. Cyclists with slower lactate accumulation also have higher levels of basal oxidative stress markers, suggesting long term physiological adaptations in these individuals that support their premier competitive status in worldwide competitions.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado Colorado Springs, Colorado Springs, CO, United States
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Research and Development, UAE Team Emirates, Abu Dhabi, United Arab Emirates
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Janel L. Martinez
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
D'Alessandro A, Fu X, Reisz JA, Kanias T, Page GP, Stone M, Kleinman S, Zimring JC, Busch M. Stored RBC metabolism as a function of caffeine levels. Transfusion 2020; 60:1197-1211. [PMID: 32394461 DOI: 10.1111/trf.15813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells. STUDY DESIGN AND METHODS We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days. RESULTS Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway. CONCLUSION Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
27
|
Stefanoni D, Fu X, Reisz JA, Kanias T, Nemkov T, Page GP, Dumont L, Roubinian N, Stone M, Kleinman S, Busch M, Zimring JC, D'Alessandro A. Nicotine exposure increases markers of oxidant stress in stored red blood cells from healthy donor volunteers. Transfusion 2020; 60:1160-1174. [PMID: 32385854 DOI: 10.1111/trf.15812] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cigarette smoking is a frequent habit across blood donors (approx. 13% of the donor population), that could compound biologic factors and exacerbate oxidant stress to stored red blood cells (RBCs). STUDY DESIGN AND METHODS As part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, a total of 599 samples were sterilely drawn from RBC units stored under blood bank conditions at Storage Days 10, 23, and 42 days, before testing for hemolysis parameters and metabolomics. Quantitative measurements of nicotine and its metabolites cotinine and cotinine oxide were performed against deuterium-labeled internal standards. RESULTS Donors whose blood cotinine levels exceeded 10 ng/mL (14% of the tested donors) were characterized by higher levels of early glycolytic intermediates, pentose phosphate pathway metabolites, and pyruvate-to-lactate ratios, all markers of increased basal oxidant stress. Consistently, increased glutathionylation of oxidized triose sugars and lipid aldehydes was observed in RBCs donated by nicotine-exposed donors, which were also characterized by increased fatty acid desaturation, purine salvage, and methionine oxidation and consumption via pathways involved in oxidative stress-triggered protein damage-repair mechanisms. CONCLUSION RBCs from donors with high levels of nicotine exposure are characterized by increases in basal oxidant stress and decreases in osmotic hemolysis. These findings indicate the need for future clinical studies aimed at addressing the impact of smoking and other sources of nicotine (e.g., nicotine patches, snuff, vaping, secondhand tobacco smoke) on RBC storage quality and transfusion efficacy.
Collapse
Affiliation(s)
- Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado
| | | |
Collapse
|
28
|
D'Alessandro A, Fu X, Reisz JA, Stone M, Kleinman S, Zimring JC, Busch M. Ethyl glucuronide, a marker of alcohol consumption, correlates with metabolic markers of oxidant stress but not with hemolysis in stored red blood cells from healthy blood donors. Transfusion 2020; 60:1183-1196. [PMID: 32385922 DOI: 10.1111/trf.15811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cell (RBC) storage in the blood bank is associated with the progressive accumulation of oxidant stress. While the mature erythrocyte is well equipped to cope with such stress, recreative habits like alcohol consumption may further exacerbate the basal level of oxidant stress and contribute to the progress of the storage lesion. STUDY DESIGN AND METHODS RBC levels of ethyl glucuronide, a marker of alcohol consumption, were measured via ultra-high-pressure liquid chromatography coupled with high-resolution mass spectrometry. Analyses were performed on 599 samples from the recalled donor population at Storage Days 10, 23, and 42 (n = 250), as part of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study. This cohort consisted of the 5th and 95th percentile of donors with extreme hemolytic propensity out of the original cohort of 13,403 subjects enrolled in the REDS-III RBC Omics study. Ehtyl glucuronide levels were thus correlated to global metabolomics and lipidomics analyses and RBC hemolytic propensity. RESULTS Ethyl glucuronide levels were positively associated with oxidant stress markers, including glutathione consumption and turnover, methionine oxidation, S-adenosylhomocysteine accumulation, purine oxidation, and transamination markers. Decreases in glycolysis and energy metabolism, the pentose phosphate pathway and ascorbate system were observed in those subjects with the highest levels of ethyl glucuronide, though hemolysis values were comparable between groups. CONCLUSION Though preliminary, this study is suggestive that markers of alcohol consumption are associated with increases in oxidant stress and decreases in energy metabolism with no significant impact on hemolytic parameters in stored RBCs from healthy donor volunteers.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vita lant Research Institute, Denver, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
29
|
Bertolone L, Roy MK, Hay AM, Morrison EJ, Stefanoni D, Fu X, Kanias T, Kleinman S, Dumont LJ, Stone M, Nemkov T, Busch MP, Zimring JC, D'Alessandro A. Impact of taurine on red blood cell metabolism and implications for blood storage. Transfusion 2020; 60:1212-1226. [PMID: 32339326 DOI: 10.1111/trf.15810] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress. STUDY DESIGN AND METHODS Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink. Reductionistic studies were also performed by incubating human RBCs with taurine ex vivo (unlabeled or 13 C15 N-labeled) at increasing doses (0, 100, 500, and 1000 μmol/L) at 37°C for up to 16 hours, with and without oxidant stress challenge with hydrogen peroxide (0.1% or 0.5%). Finally, we stored human and murine RBCs under blood bank conditions in additives supplemented with 500 μmol/L taurine, before metabolomics and posttransfusion recovery studies. RESULTS Consumption of energy drinks increased plasma and RBC levels of taurine, which was paralleled by increases in glycolysis and glutathione (GSH) metabolism in the RBC. These observations were recapitulated ex vivo after incubation with taurine and hydrogen peroxide. Taurine levels in the RBCs from the REDS-III RBC-Omics donor biobank were directly proportional to the total levels of GSH and glutathionylated metabolites and inversely correlated to oxidative hemolysis measurements. Storage of human RBCs in the presence of taurine improved energy and redox markers of storage quality and increased posttransfusion recoveries in FVB mice. CONCLUSION Taurine modulates RBC antioxidant metabolism in vivo and ex vivo, an observation of potential relevance to transfusion medicine.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Ariel M Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| |
Collapse
|
30
|
D’Alessandro A, Yoshida T, Nestheide S, Nemkov T, Stocker S, Stefanoni D, Mohmoud F, Rugg N, Dunham A, Cancelas JA. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion 2020; 60:786-798. [PMID: 32104927 PMCID: PMC7899235 DOI: 10.1111/trf.15730] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Blood transfusion is a lifesaving intervention for millions of recipients worldwide every year. Storing blood makes this possible but also promotes a series of alterations to the metabolism of the stored erythrocyte. It is unclear whether the metabolic storage lesion is correlated with clinically relevant outcomes and whether strategies aimed at improving the metabolic quality of stored units, such as hypoxic storage, ultimately improve performance in the transfused recipient. STUDY DESIGN AND METHODS Twelve healthy donor volunteers were recruited in a two-arm cross-sectional study, in which each subject donated 2 units to be stored under standard (normoxic) or hypoxic conditions (Hemanext technology). End-of-storage measurements of hemolysis and autologous posttransfusion recovery (PTR) were correlated to metabolomics measurements at Days 0, 21, and 42. RESULTS Hypoxic red blood cells (RBCs) showed superior PTR and comparable hemolysis to donor-paired standard units. Hypoxic storage improved energy and redox metabolism (glycolysis and 2,3-diphosphoglycerate), improved glutathione and methionine homeostasis, decreased purine oxidation and membrane lipid remodeling (free fatty acid levels, unsaturation and hydroxylation, acyl-carnitines). Intra- and extracellular metabolites in these pathways (including some dietary purines) showed significant correlations with PTR and hemolysis, though the degree of correlation was influenced by sulfur dioxide (SO2 ) levels. CONCLUSION Hypoxic storage improves energy and redox metabolism of stored RBCs, which results in improved posttransfusion recoveries in healthy autologous recipients-a Food and Drug Administration gold standard of stored blood quality. In addition, we identified candidate metabolic predictors of PTR for RBCs stored under standard and hypoxic conditions.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | | | - Shawnagay Nestheide
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Stocker
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, Colorado
| | - Fatima Mohmoud
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | - Neeta Rugg
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, Ohio
| | | | - Jose A. Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, Cincinnati, Ohio
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
31
|
Effects of aged stored autologous red blood cells on human plasma metabolome. Blood Adv 2020; 3:884-896. [PMID: 30890545 DOI: 10.1182/bloodadvances.2018029629] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Cold storage of blood for 5 to 6 weeks has been shown to impair endothelial function after transfusion and has been associated with measures of end-organ dysfunction. Although the products of hemolysis, such as cell-free plasma hemoglobin, arginase, heme, and iron, in part mediate these effects, a complete analysis of transfused metabolites that may affect organ function has not been evaluated to date. Blood stored for either 5 or 42 days was collected from 18 healthy autologous volunteers, prior to and after autologous transfusion into the forearm circulation, followed by metabolomics analyses. Significant metabolic changes were observed in the plasma levels of hemolytic markers, oxidized purines, plasticizers, and oxidized lipids in recipients of blood stored for 42 days, compared with 5 days. Notably, transfusion of day 42 red blood cells (RBCs) increased circulating levels of plasticizers (diethylhexyl phthalate and derivatives) by up to 18-fold. Similarly, transfusion of day 42 blood significantly increased circulating levels of proinflammatory oxylipins, including prostaglandins, hydroxyeicosatrienoic acids (HETEs), and dihydroxyoctadecenoic acids. Oxylipins were the most significantly increasing metabolites (for 9-HETE: up to ∼41-fold, P = 3.7e-06) in day 42 supernatants. Measurements of arginine metabolism confirmed an increase in arginase activity at the expense of nitric oxide synthesis capacity in the bloodstream of recipients of day 42 blood, which correlated with measurements of hemodynamics. Metabolic changes in stored RBC supernatants impact the plasma metabolome of healthy transfusion recipients, with observed increases in plasticizers, as well as vasoactive, pro-oxidative, proinflammatory, and immunomodulatory metabolites after 42 days of storage.
Collapse
|
32
|
Gehrke S, Shah N, Gamboni F, Kamyszek R, Srinivasan AJ, Gray A, Landrigan M, Welsby I, D'Alessandro A. Metabolic impact of red blood cell exchange with rejuvenated red blood cells in sickle cell patients. Transfusion 2019; 59:3102-3112. [PMID: 31385330 DOI: 10.1111/trf.15467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Red blood cell exchange (RCE) transfusions are a mainstay in the treatment of sickle cell anemia (SCA), and allow a temporary restoration of physiological parameters with respect to erythrocyte oxygen carrying capacity and systems metabolism. Recently, we noted that 1) RCE significantly impacts recipients' metabolism in SCA; 2) fresh and end-of-storage red blood cell (RBC) units differently impact systems of metabolism in healthy autologous recipients; and 3) phosphate/inosine/pyruvate/adenine (PIPA) solution reverses the metabolic age of stored RBCs. Therefore, we hypothesized that RCE with PIPA-treated RBC units could further increase the metabolic benefits of RCE in SCA patients. STUDY DESIGN AND METHODS Circulating plasma and erythrocytes were collected from patients with SCA before and after RCE, with either conventional or PIPA-treated RBC units, prior to metabolomics analyses. RESULTS Consistent with prior work, RCE significantly decreased circulating levels of markers of systemic hypoxemia (lactate, succinate) and decreased plasma levels of acyl-carnitines and amino acids. However, PIPA-treated exchanges were superior to untreated RCEs, with a higher energy state and an increased capacity to activate the pentose phosphate pathway and glutamine metabolism. In addition, RBCs and plasma from recipients of PIPA-treated RBC units resulted in significantly decreased levels of post-transfusion plasticizers, though at the expense of higher circulating levels of oxidized purines (hypoxanthine, xanthine, and the antioxidant urate). CONCLUSION Transfusion of PIPA-treated RBCs further increases the metabolic benefits of RCE to patients with SCA, significantly reducing the levels of post-transfusion plasticizers.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Nirmish Shah
- Duke University Medical Center, Durham, North Carolina
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Reed Kamyszek
- Duke University School of Medicine, Durham, North Carolina
| | - Amudan J Srinivasan
- Duke University School of Medicine, Durham, North Carolina.,Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alan Gray
- Zimmer Biomet, Braintree, Massachusetts
| | | | - Ian Welsby
- Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
33
|
Bouchard BA, Orfeo T, Keith HN, Lavoie EM, Gissel M, Fung M, Mann KG. Microparticles formed during storage of red blood cell units support thrombin generation. J Trauma Acute Care Surg 2019; 84:598-605. [PMID: 29251713 DOI: 10.1097/ta.0000000000001759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intact red blood cells (RBCs) appear to support thrombin generation in in vitro models of blood coagulation. During storage of RBC units, biochemical, structural, and physiological changes occur including alterations to RBC membranes and release of microparticles, which are collectively known as storage lesion. The clinical consequences of microparticle formation in RBC units are unclear. This study was performed to assess thrombin generation via the prothrombinase complex by washed RBCs and RBC-derived microparticles as a function of RBC unit age. METHODS Well-characterized kinetic and flow cytometric assays were used to quantify and characterize microparticles isolated from leukocyte-reduced RBC units during storage for 42 days under standard blood banking conditions. RESULTS Stored RBCs exhibited known features of storage lesion including decreasing pH, cell lysis, and release of microparticles demonstrated by scanning electron microscopy. The rate of thrombin formation by RBC units linearly increased during storage, with the microparticle fraction accounting for approximately 70% of the prothrombinase activity after 35 days. High-resolution flow cytometric analyses of microparticle isolates identified phosphatidylserine-positive RBC-derived microparticles; however, their numbers over time did not correlate with thrombin formation in that fraction. CONCLUSION Red blood cell-derived microparticles capable of supporting prothrombinase function accumulate during storage, suggesting an increased potential of transfused units as they age to interact in unplanned ways with ongoing hemostatic processes in injured individuals, especially given the standard blood bank practice of using the oldest units available.
Collapse
Affiliation(s)
- Beth A Bouchard
- From the Department of Biochemistry (B.A.B., T.O., H.N.K., E.M.L., M.G., K.G.M.), and Blood Bank and Transfusion Medicine, Department of Pathology (M.F.), The Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | |
Collapse
|
34
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
35
|
Gehrke S, Rice S, Stefanoni D, Wilkerson RB, Nemkov T, Reisz JA, Hansen KC, Lucas A, Cabrales P, Drew K, D'Alessandro A. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res 2019; 18:1827-1841. [PMID: 30793910 DOI: 10.1021/acs.jproteome.9b00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Sarah Rice
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Alfredo Lucas
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Pedro Cabrales
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Kelly Drew
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
36
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
37
|
D'Alessandro A, Culp-Hill R, Reisz JA, Anderson M, Fu X, Nemkov T, Gehrke S, Zheng C, Kanias T, Guo Y, Page G, Gladwin MT, Kleinman S, Lanteri M, Stone M, Busch M, Zimring JC. Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics. Transfusion 2018; 59:89-100. [PMID: 30353560 DOI: 10.1111/trf.14979] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biological and technical variability has been increasingly appreciated as a key factor impacting red blood cell (RBC) storability and, potentially, transfusion outcomes. Here, we performed metabolomics analyses to investigate the impact of factors other than storage duration on the metabolic phenotypes of stored RBC in a multicenter study. STUDY DESIGN AND METHODS Within the framework of the REDS-III (Recipient Epidemiology and Donor Evaluation Study-III) RBC-Omics study, 13,403 donors were enrolled from four blood centers across the United States and tested for the propensity of their RBCs to hemolyze after 42 days of storage. Extreme hemolyzers were recalled and donated a second unit of blood. Units were stored for 10, 23, and 42 days prior to sample acquisition for metabolomics analyses. RESULTS Unsupervised analyses of metabolomics data from 599 selected samples revealed a strong impact (14.2% of variance) of storage duration on metabolic phenotypes of RBCs. The blood center collecting and processing the units explained an additional 12.2% of the total variance, a difference primarily attributable to the storage additive (additive solution 1 vs. additive solution 3) used in the different hubs. Samples stored in mannitol-free/citrate-loaded AS-3 were characterized by elevated levels of high-energy compounds, improved glycolysis, and glutathione homeostasis. Increased methionine metabolism and activation of the transsulfuration pathway was noted in samples processed in the center using additive solution 1. CONCLUSION Blood processing impacts the metabolic heterogeneity of stored RBCs from the largest multicenter metabolomics study in transfusion medicine to date. Studies are needed to understand if these metabolic differences influenced by processing/storage strategies impact the effectiveness of transfusions clinically.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,BloodWorks Northwest, Seattle, Washington
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | - Marion Lanteri
- Blood Systems Research Institute, San Francisco, California
| | - Mars Stone
- Blood Systems Research Institute, San Francisco, California
| | - Michael Busch
- Blood Systems Research Institute, San Francisco, California
| | | | | |
Collapse
|
38
|
Reisz JA, Nemkov T, Dzieciatkowska M, Culp-Hill R, Stefanoni D, Hill RC, Yoshida T, Dunham A, Kanias T, Dumont LJ, Busch M, Eisenmesser EZ, Zimring JC, Hansen KC, D'Alessandro A. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion 2018; 58:2978-2991. [PMID: 30312994 DOI: 10.1111/trf.14936] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.
Collapse
Affiliation(s)
- Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Tamir Kanias
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael Busch
- Blood Systems Research Institute, San Francisco, California
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Culp-Hill R, Srinivasan AJ, Gehrke S, Kamyszek R, Ansari A, Shah N, Welsby I, D'Alessandro A. Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism. Transfusion 2018; 58:2797-2806. [PMID: 30265764 DOI: 10.1111/trf.14931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exchange transfusion is a mainstay in the treatment of sickle cell anemia. Transfusion recipients with sickle cell disease (SCD) can be transfused over 10 units per therapy, an intervention that replaces circulating sickle red blood cells (RBCs) with donor RBCs. Storage of RBCs makes the intervention logistically feasible. The average storage duration for units transfused at the Duke University Medical Center is approximately 2 weeks, a time window that should anticipate the accumulation of irreversible storage lesion to the RBCs. However, no metabolomics study has been performed to date to investigate the impact of exchange transfusion on recipients' plasma and RBC phenotypes. STUDY DESIGN AND METHODS Plasma and RBCs were collected from patients with sickle cell anemia before transfusion and within 5 hours after exchange transfusion with up to 11 units, prior to metabolomics analyses. RESULTS Exchange transfusion significantly decreased plasma levels of markers of systemic hypoxemia like lactate, succinate, sphingosine 1-phosphate, and 2-hydroxyglutarate. These metabolites accumulated in transfused RBCs, suggesting that RBCs may act as scavenger/reservoirs. Transfused RBCs displayed higher glycolysis, total adenylate pools, and 2,3-diphosphoglycerate, consistent with increased capacity to deliver oxygen. Plasma levels of acyl-carnitines and amino acids decreased, while fatty acids and potentially harmful phthalates increased upon exchange transfusion. CONCLUSION Metabolic phenotypes confirm the benefits of the transfusion therapy in transfusion recipients with SCD and the reversibility of some of the metabolic storage lesion upon transfusion in vivo in 2-week-old RBCs. However, results also suggest that potentially harmful plasticizers are transfused.
Collapse
Affiliation(s)
- Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Reed Kamyszek
- Duke University Medical Center, Durham, North Carolina
| | - Andrea Ansari
- Duke University Medical Center, Durham, North Carolina
| | - Nirmish Shah
- Duke University Medical Center, Durham, North Carolina
| | - Ian Welsby
- Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
40
|
Stevens BM, Khan N, D'Alessandro A, Nemkov T, Winters A, Jones CL, Zhang W, Pollyea DA, Jordan CT. Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes. Nat Commun 2018; 9:3694. [PMID: 30209285 PMCID: PMC6135858 DOI: 10.1038/s41467-018-05984-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a chronic hematologic disorder that frequently evolves to more aggressive stages and in some cases leads to acute myeloid leukemia (AML). MDS arises from mutations in hematopoietic stem cells (HSCs). Thus, to define optimal therapies, it is essential to understand molecular events driving HSC pathogenesis. In this study, we report that during evolution of MDS, malignant HSCs activate distinct cellular programs that render such cells susceptible to therapeutic intervention. Specifically, metabolic analyses of the MDS stem cell compartment show a profound activation of protein synthesis machinery and increased oxidative phosphorylation. Pharmacological targeting of protein synthesis and oxidative phosphorylation demonstrated potent and selective eradication of MDS stem cells in primary human patient specimens. Taken together, our findings indicate that MDS stem cells are reliant on specific metabolic events and that such properties can be targeted prior to the onset of clinically significant AML, during antecedent MDS.
Collapse
Affiliation(s)
- Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nabilah Khan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Amanda Winters
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Courtney L Jones
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Wei Zhang
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
41
|
Loi MM, Kelher M, Dzieciatkowska M, Hansen KC, Banerjee A, West FB, Stanley C, Briel M, Silliman CC. A comparison of different methods of red blood cell leukoreduction and additive solutions on the accumulation of neutrophil-priming activity during storage. Transfusion 2018; 58:2003-2012. [PMID: 30171813 DOI: 10.1111/trf.14788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Three methods of leukoreduction (LR) are used worldwide: filtration, buffy coat removal (BCR), and a combination of the previous two methods. Additionally, there are a number of additive solutions (ASs) used to preserve red blood cell (RBC) function throughout storage. During RBC storage, proinflammatory activity accumulates; thus, we hypothesize that both the method of LR and the AS affect the accumulation of proinflammatory activity. STUDY DESIGN AND METHODS Ten units of whole blood were drawn from healthy donors, the RBC units were isolated, divided in half by weight, and leukoreduced by: 1) BCR, 2) filtration, or 3) BCR and filtration (combination-LR); stored in bags containing AS-3 per AABB criteria; and sampled weekly. The supernatants were isolated and frozen (-80°C). RBC units drawn from healthy donors into AS-1-, AS-3-, or AS-5-containing bags were also stored and sampled weekly, and the supernatants were isolated and frozen. The supernatants were assayed for neutrophil (PMN)-priming activity and underwent proteomic analyses. RESULTS Filtration and combination LR decreased priming activity accumulation versus buffy coat LR, although the accumulation of priming activity was not different during storage. Combination LR increased hemolysis versus filtration via proteomic analysis. Priming activity from AS-3 units was significant later in storage versus AS-1- or AS-5-stored units. CONCLUSIONS Although both filtration and combination LR decrease the accumulation of proinflammatory activity versus buffy coat LR, combination LR is not more advantageous over filtration, has increased costs, and may cause increased hemolysis. In addition, AS-3 decreases the early accumulation of PMN-priming activity during storage versus AS-1 or AS-5.
Collapse
Affiliation(s)
- Michele M Loi
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Marguerite Kelher
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - F Bernadette West
- Connecticut, Mid-Atlantic, and Appalachian Regions, American Red Cross, Hartford, Connecticut
| | | | - Matthew Briel
- Manufacturing, Bonfils Blood Center, Denver, Colorado
| | - Christopher C Silliman
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
42
|
Huang H, Yarmush ML, Usta OB. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat Commun 2018; 9:3201. [PMID: 30097570 PMCID: PMC6086840 DOI: 10.1038/s41467-018-05636-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 11/12/2022] Open
Abstract
Supercooling of aqueous solutions is a fundamentally and practically important physical phenomenon with numerous applications in biopreservation and beyond. Under normal conditions, heterogeneous nucleation mechanisms critically prohibit the simultaneous long-term (> 1 week), large volume (> 1 ml), and low temperatures (< -10 °C) supercooling of aqueous solutions. Here, we report on the use of surface sealing of water by an oil phase to significantly diminish the primary heterogeneous nucleation at the water/air interface. We achieve deep supercooling (down to -20 °C) of large volumes of water (up to 100 ml) for long periods (up to 100 days) simultaneously via this approach. Since oils are mixtures of various hydrocarbons we also report on the use of pure alkanes and primary alcohols of various lengths to achieve the same. Furthermore, we demonstrate the utility of deep supercooling via preliminary studies on extended (100 days) preservation of human red blood cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States.
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, United States.
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts, 02114, United States.
| |
Collapse
|
43
|
Gehrke S, Srinivasan AJ, Culp-Hill R, Reisz JA, Ansari A, Gray A, Landrigan M, Welsby I, D'Alessandro A. Metabolomics evaluation of early-storage red blood cell rejuvenation at 4°C and 37°C. Transfusion 2018; 58:1980-1991. [PMID: 29687892 DOI: 10.1111/trf.14623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Refrigerated red blood cell (RBC) storage results in the progressive accumulation of biochemical and morphological alterations collectively referred to as the storage lesion. Storage-induced metabolic alterations can be in part reversed by rejuvenation practices. However, rejuvenation requires an incubation step of RBCs for 1 hour at 37°C, limiting the practicality of providing "on-demand," rejuvenated RBCs. We tested the hypothesis that the addition of rejuvenation solution early in storage as an adjunct additive solution would prevent-in a time window consistent with the average age of units transfused to sickle cell recipients at Duke (15 days)-many of the adverse biochemical changes that can be reversed via standard rejuvenation, while obviating the incubation step. STUDY DESIGN AND METHODS Metabolomics analyses were performed on cells and supernatants from AS-1 RBC units (n = 4), stored for 15 days. Units were split into pediatric bag aliquots and stored at 4°C. These were untreated controls, washed with or without rejuvenation, performed under either standard (37°C) or cold (4°C) conditions. RESULTS All three treatments removed most metabolic storage by-products from RBC supernatants. However, only standard and cold rejuvenation provided significant metabolic benefits as judged by the reactivation of glycolysis and regeneration of adenosine triphosphate and 2,3-diphosphoglycerate. Improvements in energy metabolism also translated into increased capacity to restore the total glutathione pool and regenerate oxidized vitamin C in its reduced (ascorbate) form. CONCLUSION Cold and standard rejuvenation of 15-day-old RBCs primes energy and redox metabolism of stored RBCs, while providing a logistic advantage for routine blood bank processing workflows.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Ansari
- Duke University School of Medicine, Durham, North Carolina
| | - Alan Gray
- Zimmer Biomet, Braintree, Massachusetts
| | | | - Ian Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
44
|
Wang Y, Li Q, Ma T, Liu X, Wang B, Wu Z, Dang S, Lv Y, Wu R. Transfusion of Older Red Blood Cells Increases the Risk of Acute Kidney Injury After Orthotopic Liver Transplantation: A Propensity Score Analysis. Anesth Analg 2018; 127:202-209. [PMID: 28863026 DOI: 10.1213/ane.0000000000002437] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and serious complication of orthotopic liver transplantation (OLT). Transfusion of older red blood cells (RBCs) has been implicated in poor outcomes in trauma, cardiac surgery, and critically ill patients. However, whether transfusion of older RBCs plays any role in post-OLT AKI remained unknown. The aim of this study was to investigate the effect of the age of transfused RBCs on post-OLT AKI. METHODS The clinical data of consecutive adult patients who received donation after cardiac death and underwent OLT from December 2011 to December 2015 were analyzed. These patients were divided into 2 groups: the newer blood group, who received exclusively RBCs that had been stored for <14 days; and the older blood group, who received RBCs that had been stored for 14 days or more. The incidence of post-OLT AKI, severe AKI, lengths of intensive care unit and hospital stay, and in-hospital mortality after OLT were analyzed. RESULTS Postoperative AKI occurred in 65.1% of patients in the older blood group and 40.5% of patients in the newer blood group (P < .01). The incidence of severe AKI after OLT was significantly higher, and the duration of intensive care unit stay was significantly longer, in the older blood group. After adjustment by the multivariable regression logistic analysis, transfusion of older blood was independently associated with post-OLT AKI (odds ratio [OR] = 2.47 [95% confidence interval {CI}, 1.13-5.41]; P = .024) and severe AKI (OR = 5.88 [95% CI, 2.06-16.80]; P = .001). After adjustment by the inverse probability of treatment weighting analysis, patients in the older blood group still had significantly higher incidences of postoperative AKI (OR = 2.13 [95% CI, 1.07-4.22]; P = .030) and severe AKI (OR = 3.34 [95% CI, 1.47-7.60]; P = .003) than those in the newer blood group. CONCLUSIONS Transfusion of older RBCs significantly increased the risk of postoperative AKI in liver transplant recipients.
Collapse
Affiliation(s)
- Yue Wang
- From the Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- From the Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Ma
- From the Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shaonong Dang
- Department of Epidemiology and Biostatistics, Xi'an Jiaotong University School of Public Health, Xi'an, Shaanxi Province, China
| | - Yi Lv
- From the Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- From the Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, Xi'an, China
- Institute of Advanced Surgical Technology and Engineering, Xi'an, China
| |
Collapse
|
45
|
Red blood cell proteomics update: is there more to discover? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:182-187. [PMID: 28263177 DOI: 10.2450/2017.0293-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/30/2022]
|
46
|
Yurkovich JT, Palsson BO. Quantitative -omic data empowers bottom-up systems biology. Curr Opin Biotechnol 2018; 51:130-136. [DOI: 10.1016/j.copbio.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022]
|
47
|
Time-Course Investigation of Small Molecule Metabolites in MAP-Stored Red Blood Cells Using UPLC-QTOF-MS. Molecules 2018; 23:molecules23040923. [PMID: 29659551 PMCID: PMC6017316 DOI: 10.3390/molecules23040923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023] Open
Abstract
Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on RBCs stored in a number of ASs, including SAGM, AS-1, AS-3, AS-5, AS-7, PAGGGM, and MAP. However, the reported metabolome analysis of laboratory-made MAP-stored RBCs was mainly focused on the time-dependent alterations in glycolytic intermediates during storage. In this study, we investigated the time-course of alterations in various small molecule metabolites in RBCs stored in commercially used MAP for 49 days using ultra-high performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS). These alterations indicated that RBC storage lesion is related to multiple pathways including glycolysis, pentose phosphate pathway, glutathione homeostasis, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms of RBCs in vitro aging and encourage the deployment of systems biology methods to blood products in transfusion medicine.
Collapse
|
48
|
D'Alessandro A, Reisz JA, Culp-Hill R, Korsten H, van Bruggen R, de Korte D. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells. Transfusion 2018; 58:1992-2002. [PMID: 29624679 DOI: 10.1111/trf.14620] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. STUDY DESIGN AND METHODS We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. RESULTS Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. CONCLUSION Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Herbert Korsten
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Academic Medical Centre, Amsterdam, the Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands.,Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Yurkovich JT, Bordbar A, Sigurjónsson ÓE, Palsson BO. Systems biology as an emerging paradigm in transfusion medicine. BMC SYSTEMS BIOLOGY 2018. [PMID: 29514691 PMCID: PMC5842607 DOI: 10.1186/s12918-018-0558-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Blood transfusions are an important part of modern medicine, delivering approximately 85 million blood units to patients annually. Recently, the field of transfusion medicine has started to benefit from the “omic” data revolution and corresponding systems biology analytics. The red blood cell is the simplest human cell, making it an accessible starting point for the application of systems biology approaches. In this review, we discuss how the use of systems biology has led to significant contributions in transfusion medicine, including the identification of three distinct metabolic states that define the baseline decay process of red blood cells during storage. We then describe how a series of perturbations to the standard storage conditions characterized the underlying metabolic phenotypes. Finally, we show how the analysis of high-dimensional data led to the identification of predictive biomarkers. The transfusion medicine community is in the early stages of a paradigm shift, moving away from the measurement of a handful of chosen variables to embracing systems biology and a cell-scale point of view.
Collapse
Affiliation(s)
- James T Yurkovich
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA
| | - Aarash Bordbar
- Sinopia Biosciences, 600 W Broadway Suite 700, San Diego, 92101, USA
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Hringbraut 101, Reykjavík, 101, Iceland.,The Blood Bank, Landspítali-University Hospital, 9500 Gilman Drive, Reykjavík, 101, Iceland
| | - Bernhard O Palsson
- Department Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA. .,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
50
|
Tzounakas VL, Gevi F, Georgatzakou HT, Zolla L, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency. Front Med (Lausanne) 2018; 5:16. [PMID: 29459896 PMCID: PMC5807665 DOI: 10.3389/fmed.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.
Collapse
Affiliation(s)
- Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hara T. Georgatzakou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|