1
|
Pozzo di Borgo A, Rochette S, Gaussen A, O'Brien SF, Germain M, Renaud C, Lewin A. Transmission of Variant Creutzfeldt-Jakob Disease Through Blood Transfusion and Plasma-Derived Products: A Narrative Review of Observed and Modeled Risks. Transfus Med Rev 2023; 37:150747. [PMID: 37827587 DOI: 10.1016/j.tmrv.2023.150747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 10/14/2023]
Abstract
Secondary transmission of variant Creutzfeldt-Jakob disease (vCJD) can occur through blood transfusion or receipt of plasma-derived products. However, published reviews on this topic are outdated, focused on a single country or product type, or did not comprehensively review modeling studies on the risk of transfusion-transmission. We reviewed existing data on observed and modeled risks of transfusion-transmission of vCJD. To date, five patients are suspected to have acquired clinical vCJD or a vCJD infection after receiving a blood or plasma-derived product from a donor who later developed clinical vCJD. All of these cases received a nonleukodepleted blood-derived product in the United Kingdom between 1994 and 1999. Thus, all transfusion-associated cases occurred before the adoption of universal leukodepletion in 1999, which supports the preferential tropism of vCJD for leukocytes. In descriptive cohort studies, no cases of clinical vCJD were observed over ∼13 years of follow-up. In modeling studies, the risk of collecting a contaminated donation was generally <23 per million donations, that of infection was generally <10 per million transfusions or doses, and that of clinical vCJD was generally <2 per million transfusions or doses. These low risk estimates and the two-decade long absence of new cases of transfusion-associated vCJD suggest vCJD poses minimal risks to the safety of the blood supply. Furthermore, despite concerns of a second wave driven by individuals harboring a non-MM genotype at codon 129 of PRNP, there has been only 1 autopsy-confirmed case of clinical vCJD in an MV individual in 2016. The current trend to reassess or (in some countries) fully withdraw the blood donation criteria related to vCJD therefore seems justified, safe, and may significantly expand the donor base.
Collapse
Affiliation(s)
| | - Samuel Rochette
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| | - Amaury Gaussen
- Medical Affairs and Innovation, Héma-Québec, Quebec, Quebec, Canada.
| | - Sheila F O'Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - Marc Germain
- Medical Affairs and Innovation, Héma-Québec, Quebec, Quebec, Canada.
| | - Christian Renaud
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| | - Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Jaffré N, Delmotte J, Mikol J, Deslys JP, Comoy E. Unexpected decrease of full-length prion protein in macaques inoculated with prion-contaminated blood products. Front Mol Biosci 2023; 10:1164779. [PMID: 37214335 PMCID: PMC10196267 DOI: 10.3389/fmolb.2023.1164779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
The presence of prion infectivity in the blood of patients affected by variant Creutzfeldt-Jakob disease (v-CJD), the human prion disease linked to the bovine spongiform encephalopathy (BSE), poses the risk of inter-human transmission of this fatal prion disease through transfusion. In the frame of various experiments, we have previously described that several cynomolgus macaques experimentally exposed to prion-contaminated blood products developed c-BSE/v-CJD, but the vast majority of them developed an unexpected, fatal disease phenotype focused on spinal cord involvement, which does not fulfill the classical diagnostic criteria of v-CJD. Here, we show that extensive analyses with current conventional techniques failed to detect any accumulation of abnormal prion protein (PrPv-CJD) in the CNS of these myelopathic animals, i.e., the biomarker considered responsible for neuronal death and subsequent clinical signs in prion diseases. Conversely, in the spinal cord of these myelopathic primates, we observed an alteration of their physiological cellular PrP pattern: PrP was not detectable under its full-length classical expression but mainly under its physiological terminal-truncated C1 fragment. This observed disappearance of the N-terminal fragment of cellular PrP at the level of the lesions may provide the first experimental evidence of a link between loss of function of the cellular prion protein and disease onset. This original prion-induced myelopathic syndrome suggests an unexpected wide extension in the field of prion diseases that is so far limited to pathologies associated with abnormal changes of the cellular PrP to highly structured conformations.
Collapse
|
3
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
4
|
Houston F, Andréoletti O. Animal prion diseases: the risks to human health. Brain Pathol 2019; 29:248-262. [PMID: 30588682 DOI: 10.1111/bpa.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/23/2018] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases of animals notably include scrapie in small ruminants, chronic wasting disease (CWD) in cervids and classical bovine spongiform encephalopathy (C-BSE). As the transmission barrier phenomenon naturally limits the propagation of prions from one species to another, and the lack of epidemiological evidence for an association with human prion diseases, the zoonotic potential of these diseases was for a long time considered negligible. However, in 1996, C-BSE was recognized as the cause of a new human prion disease, variant Creutzfeldt-Jakob disease (vCJD), which triggered an unprecedented public health crisis in Europe. Large-scale epidemio-surveillance programs for scrapie and C-BSE that were implemented in the EU after the BSE crisis revealed that the distribution and prevalence of prion diseases in the ruminant population had previously been underestimated. They also led to the recognition of new forms of TSEs (named atypical) in cattle and small ruminants and to the recent identification of CWD in Europe. At this stage, the characterization of the strain diversity and zoonotic abilities associated with animal prion diseases remains largely incomplete. However, transmission experiments in nonhuman primates and transgenic mice expressing human PrP clearly indicate that classical scrapie, and certain forms of atypical BSE (L-BSE) or CWD may have the potential to infect humans. The remaining uncertainties about the origins and relationships between animal prion diseases emphasize the importance of the measures implemented to limit human exposure to these potentially zoonotic agents, and of continued surveillance for both animal and human prion diseases.
Collapse
Affiliation(s)
- Fiona Houston
- Infection and Immunity Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Comoy EE, Mikol J, Deslys JP. Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans? Prion 2018; 12:1-8. [PMID: 30080439 PMCID: PMC6277188 DOI: 10.1080/19336896.2018.1505399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected. After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques. It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine. These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.
Collapse
Affiliation(s)
- Emmanuel E. Comoy
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jacqueline Mikol
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
|
7
|
Houston F, Andréoletti O. The zoonotic potential of animal prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:447-462. [PMID: 29887151 DOI: 10.1016/b978-0-444-63945-5.00025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine spongiform encephalopathy (BSE) is the only animal prion disease that has been demonstrated to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans. The link between BSE and vCJD was established by careful surveillance, epidemiologic investigations, and experimental studies using in vivo and in vitro models of cross-species transmission. Similar approaches have been used to assess the zoonotic potential of other animal prion diseases, including atypical forms identified through active surveillance. There is no epidemiologic evidence that classical or atypical scrapie, atypical forms of BSE, or chronic wasting disease (CWD) is associated with human prion disease, but the limitations of the epidemiologic data should be taken into account when interpreting these results. Transmission experiments in nonhuman primates and human PrP transgenic mice suggest that classic scrapie, L-type atypical BSE (L-BSE), and CWD may have zoonotic potential, which for L-BSE appears to be equal to or greater than that of classic BSE. The results of in vitro conversion assays to analyze the human transmission barrier correlate well with the in vivo data. However, it is still difficult to predict the likelihood that an animal prion disease will transmit to humans under conditions of field exposure from the results of in vivo or in vitro experiments. This emphasizes the importance of continuing systematic surveillance for both human and animal prion diseases in identifying zoonotic transmission of diseases other than classic BSE.
Collapse
Affiliation(s)
- Fiona Houston
- Neurobiology Division, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom.
| | | |
Collapse
|
8
|
Comoy EE, Mikol J, Jaffré N, Lebon V, Levavasseur E, Streichenberger N, Sumian C, Perret-Liaudet A, Eloit M, Andreoletti O, Haïk S, Hantraye P, Deslys JP. Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque. Nat Commun 2017; 8:1268. [PMID: 29097653 PMCID: PMC5668246 DOI: 10.1038/s41467-017-01347-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of human populations to bovine spongiform encephalopathy through contaminated food has resulted in <250 cases of variant Creutzfeldt-Jakob disease (vCJD). However, more than 99% of vCJD infections could have remained silent suggesting a long-term risk of secondary transmission particularly through blood. Here, we present experimental evidence that transfusion in mice and non-human primates of blood products from symptomatic and non-symptomatic infected donors induces not only vCJD, but also a different class of neurological impairments. These impairments can all be retransmitted to mice with a pathognomonic accumulation of abnormal prion protein, thus expanding the spectrum of known prion diseases. Our findings suggest that the intravenous route promotes propagation of masked prion variants according to different mechanisms involved in peripheral replication.
Collapse
Affiliation(s)
- Emmanuel E Comoy
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Jacqueline Mikol
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Nina Jaffré
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Vincent Lebon
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Etienne Levavasseur
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Nathalie Streichenberger
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Chryslain Sumian
- MacoPharma, 200 Chaussée Fernand Forest, 59200, Tourcoing, France
| | - Armand Perret-Liaudet
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyogène CNRS UMR 5310-INSERM U1217, 59 Boulevard Pinel, 69677, Bron, France
| | - Marc Eloit
- Institut Pasteur, 15 Rue du Docteur Roux, 75015, Paris, France
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Ecole Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076, Toulouse, France
| | - Stéphane Haïk
- Université Pierre et Marie Curie, UMR-S 1127, CNRS UMR 722, Institut du Cerveau et de la Moelle Epinière, G.H. Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | - Philippe Hantraye
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- CEA, Institut François Jacob, Université Paris-Saclay, 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Di Minno G, Navarro D, Perno CF, Canaro M, Gürtler L, Ironside JW, Eichler H, Tiede A. Pathogen reduction/inactivation of products for the treatment of bleeding disorders: what are the processes and what should we say to patients? Ann Hematol 2017; 96:1253-1270. [PMID: 28624906 PMCID: PMC5486800 DOI: 10.1007/s00277-017-3028-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered.
Collapse
Affiliation(s)
- Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Regional Reference Centre for Coagulation Disorders, Federico II University, Via S. Pansini 5, 80131, Naples, Italy.
| | - David Navarro
- Department of Microbiology, Microbiology Service, Hospital Clínico Universitario, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mariana Canaro
- Department of Hemostasis and Thrombosis, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Lutz Gürtler
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, University of München, Munich, Germany
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
11
|
Cervenakova L, Saá P, Yakovleva O, Vasilyeva I, de Castro J, Brown P, Dodd R. Are prions transported by plasma exosomes? Transfus Apher Sci 2016; 55:70-83. [PMID: 27499183 DOI: 10.1016/j.transci.2016.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood has been shown to contain disease-associated misfolded prion protein (PrP(TSE)) in animals naturally and experimentally infected with various transmissible spongiform encephalopathy (TSE) agents, and in humans infected with variant Creutzfeldt-Jakob disease (vCJD). Recently, we have demonstrated PrP(TSE) in extracellular vesicle preparations (EVs) containing exosomes from plasma of mice infected with mouse-adapted vCJD by Protein Misfolding Cyclic Amplification (PMCA). Here we report the detection of PrP(TSE) by PMCA in EVs from plasma of mice infected with Fukuoka-1 (FU), an isolate from a Gerstmann-Sträussler-Scheinker disease patient. We used Tga20 transgenic mice that over-express mouse cellular prion protein, to assay by intracranial injections the level of infectivity in a FU-infected brain homogenate from wild-type mice (FU-BH), and in blood cellular components (BCC), consisting of red blood cells, white blood cells and platelets, plasma EVs, and plasma EVs subjected to multiple rounds of PMCA. Only FU-BH and plasma EVs from FU-infected mice subjected to PMCA that contained PrP(TSE) transmitted disease to Tga20 mice. Plasma EVs not subjected to PMCA and BCC from FU-infected mice failed to transmit disease. These findings confirm the high sensitivity of PMCA for PrP(TSE) detection in plasma EVs and the efficiency of this in vitro method to produce highly infectious prions. The results of our study encourage further research to define the role of EVs and, more specifically exosomes, as blood-borne carriers of PrP(TSE).
Collapse
Affiliation(s)
- Larisa Cervenakova
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA.
| | - Paula Saá
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA
| | - Oksana Yakovleva
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA; The Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, DETTD, OBRR, CBER, US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Irina Vasilyeva
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA
| | - Jorge de Castro
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA; Meso Scale Diagnostics, LLC, Rockville, Maryland, USA
| | - Paul Brown
- National Institutes of Health, Bethesda, Maryland, USA
| | - Roger Dodd
- Scientific Affairs, American National Red Cross, Rockville, Maryland, USA
| |
Collapse
|
12
|
Leucoreduction of blood components: an effective way to increase blood safety? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:214-27. [PMID: 26710353 DOI: 10.2450/2015.0154-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/31/2015] [Indexed: 02/08/2023]
Abstract
Over the past 30 years, it has been demonstrated that removal of white blood cells from blood components is effective in preventing some adverse reactions such as febrile non-haemolytic transfusion reactions, immunisation against human leucocyte antigens and human platelet antigens, and transmission of cytomegalovirus. In this review we discuss indications for leucoreduction and classify them into three categories: evidence-based indications for which the clinical efficacy is proven, indications based on the analysis of observational clinical studies with very consistent results and indications for which the clinical efficacy is partial or unproven.
Collapse
|
13
|
Transmission of scrapie prions to primate after an extended silent incubation period. Sci Rep 2015; 5:11573. [PMID: 26123044 PMCID: PMC4485159 DOI: 10.1038/srep11573] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022] Open
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
Collapse
|