1
|
Hosseini E, Nodeh FK, Ghasemzadeh M. Gamma irradiation induces a pro-apoptotic state in longer stored platelets, without progressing to an overt apoptosis by day 7 of storage. Apoptosis 2023:10.1007/s10495-023-01841-5. [PMID: 37127837 DOI: 10.1007/s10495-023-01841-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although gamma-irradiation to platelet products is a standard method to prevent the risk of TA-GVHD in vulnerable recipients, it induces some proteomic and redox changes, of which irradiation-induced ROS increments may potentiate platelet mitochondrial dysfunction. However, whether these changes cause platelet apoptosis, or affect their viability during storage, is the main subject of this study. METHODS PLT-rich plasma PC was split into two bags, one kept as control while other was subjected to gamma-irradiation. Within 7-days storage, cytosolic and mitochondrial levels of cytochrome c and pro-apoptotic molecules of Bak and Bax were evaluated by western-blotting. Intraplatelet active caspase (using FAM-DEVD-FMK) and PS-exposure were detected by flowcytometry. Caspase activity in platelet lysate was also confirmed by immunofluorescence detection of Caspase-3/7 Substrate N-Ac-DEVD-N'-MC-R110 while platelet viability was evaluated with MTT assays. RESULTS Cytosolic cytochrome c gradually increased while its mitochondrial content steadily declined during 7 days of storage. In a contrary trend, reverse patterns were observed for Bak and Bax expressions. Gamma-irradiated platelets showed higher release of mitochondrial cytochrome c that reflected by higher cytosolic cytochrome c levels on day 7 of storage. Concurrently mitochondrial pro-apoptotic Bak and Bax proteins increased on day 7 in irradiated products. However, gamma-irradiation didn't significantly increase caspase activity or PS-exposure, nor did it decrease platelet viability. CONCLUSION Here, consistent with studies on "gamma-irradiation-induced oxidative stress", we showed that gamma-ray also increases platelet pro-apoptotic signals during storage, although not strongly enough to affect platelet viability by overt apoptosis induction. Conclusively, whether supplementing ROS scavengers or antioxidants to irradiated platelets can improve their quality during storage may be of interest for future research.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Fatemeh Kiani Nodeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, 14665-1157, Iran.
| |
Collapse
|
2
|
Nash J, Saunders CV, George C. pH is unsuitable as a quality control marker in platelet concentrates stored in platelet additive solutions. Vox Sang 2023; 118:183-184. [PMID: 36660778 DOI: 10.1111/vox.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Jamie Nash
- Component Development and Research Laboratory, Welsh Blood Service, Llantrisant, UK
| | - Christine V Saunders
- Component Development and Research Laboratory, Welsh Blood Service, Llantrisant, UK
| | - Chloë George
- Component Development and Research Laboratory, Welsh Blood Service, Llantrisant, UK
| |
Collapse
|
3
|
Tohidi-Esfahani I, Tan S, Tan CW, Johnson L, Marks DC, Chen VM. Platelet procoagulant potential is reduced in platelet concentrates ex vivo but appears restored following transfusion. Transfusion 2021; 61:3420-3431. [PMID: 34611925 DOI: 10.1111/trf.16695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The procoagulant profile of platelet concentrates (PCs) following transfusion has been difficult to evaluate due to lack of specific markers. This study aimed to characterize procoagulant platelets in PCs and the effect of transfusion. STUDY DESIGN AND METHODS Buffy coat-derived PCs from 12 donors were pooled, split, then stored conventionally, cold (2-6°C) or cryopreserved (-80°C). Procoagulant platelet profiles were assessed by flow cytometry (GSAO+ /P-selectin+ ), lactadherin-binding, and calibrated automated thrombogram, during storage, unstimulated, or after thrombin and collagen stimulation and compared with blood from healthy volunteers. Platelet activation (P-selectin) and procoagulant platelet formation potential were measured (flow cytometry) in patients receiving clinically indicated conventional PC transfusion. RESULTS Independent of significant increases with storage, procoagulant platelet proportions with and without agonist stimulation were significantly blunted in conventionally stored PCs (stimulated day 5 conventional PC 4.2 ± 1.3%, healthy volunteer blood 11.1 ± 2.9%; p < .0001). Cryopreserved PCs contained the highest proportion of procoagulant platelets (unstimulated: cryopreserved 25.6 ± 1.8% vs. day 5 conventional 0.5 ± 0.1% vs. day 14 cold-stored 5.8 ± 1.0%, p < .0001), but demonstrated minimal increase with agonist. Transfusion of PCs was associated with an increase in procoagulant platelets (2.2 ± 1.4% vs. 0.6 ± 0.2%; p = .004) and reversal of the blunted agonist response (15.8 ± 5.9% vs. 4.0 ± 1.6%; p < .0001). Procoagulant responses post-transfusion were significantly higher than healthy controls, suggesting a priming effect. The P-selectin agonist response was not restored upon transfusion (79.4 ± 13.9% vs. 82.0 ± 2.5%). CONCLUSION Storage blunts the procoagulant platelet response to agonist stimulation in PCs. Despite this, conventionally stored PCs have high procoagulant potential following transfusion, with a discordant, persistent reduction in P-selectin response.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Concord Repatriation General Hospital, Sydney, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shereen Tan
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Chuen Wen Tan
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Singapore General Hospital, Singapore, Singapore
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Denese C Marks
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Sydney, Australia.,Haematology Department, Concord Repatriation General Hospital, Sydney, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Waubert de Puiseau M, Sciesielski LK, Meyer O, Liu ZJ, Badur CA, Schönfeld H, Tauber R, Pruß A, Sola-Visner MC, Dame C. Pooling, room temperature, and extended storage time increase the release of adult-specific biologic response modifiers in platelet concentrates: a hidden transfusion risk for neonates? Transfusion 2020; 60:1828-1836. [PMID: 32339309 DOI: 10.1111/trf.15827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Adult donor platelets (PLTs) are frequently transfused to prevent or stop bleeding in neonates with thrombocytopenia. There is evidence for PLT transfusion-related morbidity and mortality, leading to the hypothesis on immunomodulatory effects of transfusing adult PLTs into neonates. Candidate factors are biologic response modifiers (BRMs) that are expressed at higher rates in adult than in neonatal PLTs. This study investigated whether storage conditions or preparation methods impact on the release of those differentially expressed BRMs. STUDY DESIGN AND METHODS Pooled PLT concentrates (PCs) and apheresis PCs (APCs) were stored under agitation for up to 7 days at room temperature (RT) or at 2 to 8°C. The BRMs CCL5/RANTES, TGFβ1, TSP1, and DKK1 were measured in PCs' supernatant, lysate, and corresponding plasma. PLT function was assessed by light transmission aggregometry. RESULTS Concerning the preparation method, higher concentrations of DKK1 were found in pooled PCs compared to APCs. In supernatants, the concentrations of CCL5, TGFβ1, TSP1, and DKK1 significantly increased, both over standard (≤4 days) and over extended storage times (7 days). Each of the four BRMs showed an up to twofold increase in concentration after storage at RT compared to cold storage (CS). There was no difference in the aggregation capacity. CONCLUSION This analysis shows that the release of adult-specific BRMs during storage is lowest in short- and CS APCs. Our study points to strategies for reducing the exposure of sick neonates to BRMs that can be specifically associated to PLT transfusion-related morbidity.
Collapse
Affiliation(s)
| | - Lina K Sciesielski
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Meyer
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | | | - Helge Schönfeld
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité - Universitätsmedizin Berlin, and Labor Berlin Charité Vivantes GmbH, Berlin
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martha C Sola-Visner
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston/MA, USA
| | - Christof Dame
- Klinik für Neonatologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Dasgupta SK, Thiagarajan P. Cofilin-1-induced actin reorganization in stored platelets. Transfusion 2020; 60:806-814. [PMID: 32159862 DOI: 10.1111/trf.15747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND During platelet storage, there are extensive changes in cytoskeleton and phosphatidylserine exposure. The intrinsic mitochondrial pathway of apoptosis, activated in stored platelets, is a major mediator these changes. Cofilin-1 is an effector of actin reorganization. We examined the effect of cofilin-1 deficiency on cytoskeleton and phosphatidylserine exposure during storage and following activation of apoptosis. METHODS AND RESULTS We assessed actin filaments by Alexa-647-phalloidin and phosphatidylserine exposure by fluorescein isothiocyanate-lactadherin by fluorescence microscopy. In fresh platelets, actin filaments are distributed in the subcortical region, and they do not express phosphatidylserine in the outer surface. In stored platelets, there is retraction of actin filaments from the subcortical region with increased phosphatidylserine expression. These changes are seen in 20% of platelets of 6 days old and increases further with storage. Treatment with ABT-737, which activates the mitochondrial apoptosis, induces similar cytoskeletal changes in actin filaments with increased phosphatidylserine. Cofilin-1 is activated in stored platelets as well as in ABT-737 treated platelets by dephosphorylation. In cofilin-1 deficient murine platelets actin filaments are abnormal and ABT-737 induces less phosphatidylserine. Despite these changes in vitro, platelet survival of cofilin-1 deficient platelets in mice was not significantly different from their wild-type controls. CONCLUSION These results show that cofilin-1 plays a role in apoptosis-induced actin rearrangement and phosphatidylserine exposure during storage. Despite the defects in platelet cytoskeleton and phosphatidylserine exposure in cofilin-1-deficient platelets, the in vivo life span of platelets is similar to littermate controls, indicating multiple redundant pathways for the clearance of platelets in vivo.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Pennell EN, Shiels R, Vidimce J, Wagner KH, Shibeeb S, Bulmer AC. The impact of bilirubin ditaurate on platelet quality during storage. Platelets 2019; 31:884-896. [PMID: 31747815 DOI: 10.1080/09537104.2019.1693038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bilirubin ditaurate (BRT), a conjugated bilirubin analogue, has demonstrated anti-platelet characteristics following acute ex vivo exposure. Scavenging of mitochondrial superoxide and attenuation of granule exocytosis suggested a potential benefit for including BRT for storage. With no reports of cytotoxicity following acute exposure, the impact of 35µM BRT on platelet function was investigated, in clinically suppled units, for up to seven days. Exposure to 35µM BRT significantly reduced mitochondrial membrane potential and increased glucose consumption until exhaustion after 72 hours. Platelet aggregation and activation was significantly impaired by BRT. Mitochondrial superoxide production and phosphatidylserine expression were significantly elevated following glucose exhaustion, with decreased viability observed from day five onwards. Lactate accumulation and loss of bicarbonate, support a metabolic disturbance, leading to a decline of quality following BRT inclusion. Although acute ex vivo BRT exposure reported potentially beneficial effects, translation from acute to chronic exposure failed to combat declining platelet function during storage. BRT exposure resulted in perturbations of platelet quality, with the utility of BRT during storage therefore limited. However, these are the first data of prolonged platelet exposure to analogues of conjugated bilirubin and may improve our understanding of platelet function in the context of conjugated hyperbilirubinemia.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University , Gold Coast, Australia
| | - Ryan Shiels
- School of Medical Science, Griffith University , Gold Coast, Australia
| | - Josif Vidimce
- School of Medical Science, Griffith University , Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna , Vienna Austria
| | - Sapha Shibeeb
- School of Medical Science, Griffith University , Gold Coast, Australia.,Endeavour College of Natural Health , Melbourne, Australia
| | | |
Collapse
|
7
|
Escolar G, McCullough J. Platelet in vitro assays: their correspondence with their in vivo hemostatic potential. Transfusion 2019; 59:3783-3793. [PMID: 31642072 DOI: 10.1111/trf.15559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 01/01/2023]
Abstract
Developments during the past few years have resulted in multiple kinds of platelet products for transfusion. This involves different collection methods, containers, preservative solutions, modifications of storage temperatures and durations, and additional treatments such as pathogen reduction. Much experience has been obtained testing these processes in vitro to seek indications of in vivo effectiveness. Availability of an in vitro method that correlated with in vivo effectiveness would be extremely valuable for these different kinds of platelet products and as more innovation in platelet preparation occurs in the future. This report reviews the methods for in vitro platelet testing with a view to their in vivo implications and whether such testing could be helpful in projecting the clinical effectiveness of different platelet products.
Collapse
Affiliation(s)
- Gines Escolar
- Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jeffrey McCullough
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Hosseini E, Ghasemzadeh M, Azizvakili E, Beshkar P. Platelet spreading on fibrinogen matrix, a reliable and sensitive marker of platelet functional activity during storage. J Thromb Thrombolysis 2019; 48:430-438. [DOI: 10.1007/s11239-019-01916-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Oikawa S, Minegishi M, Endo K, Kawashima W, Kosunago S, Oyama M, Suzuki K, Shimizu H. Impact of the platelet washing process on in vitro platelet properties, and the levels of soluble CD40 ligand and platelet-derived microparticles in the storage media. Transfusion 2018; 59:1080-1089. [DOI: 10.1111/trf.15111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Shinji Oikawa
- Japanese Red Cross Tohoku Block Blood Center; Sendai Japan
- Japanese Red Cross Miyagi Blood Center; Sendai Japan
| | | | - Kimika Endo
- Japanese Red Cross Tohoku Block Blood Center; Sendai Japan
- Central Blood Institute; Blood Service Headquarters, Japanese Red Cross Society; Tokyo Japan
| | - Wataru Kawashima
- Japanese Red Cross Tohoku Block Blood Center; Sendai Japan
- Blood Service Headquarters; Japanese Red Cross Society; Tokyo Japan
| | | | - Masanori Oyama
- Japanese Red Cross Tohoku Block Blood Center; Sendai Japan
| | - Ko Suzuki
- Central Blood Institute; Blood Service Headquarters, Japanese Red Cross Society; Tokyo Japan
| | | |
Collapse
|
10
|
Castrillo Fernández A, Lanteri MC, Arcas Otero C, Díaz Pereira A, Adelantado Pérez M. In vitro evaluation of pathogen inactivated platelet quality: An 8 year experience of routine use in Galicia, Spain. Transfus Apher Sci 2018; 58:87-93. [PMID: 30579750 DOI: 10.1016/j.transci.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) treated by the pathogen inactivation technology (PI) using amotosalen and UVA illumination (PI-PCs) can be manufactured in additive solutions (PAS-III and PAS-IIIM) or in 100% Plasma. Quality control (QC) is an integral part of the production. We capitalized on our ongoing QC program to capture 8 years-worth of data on parameters related to the quality of 116,214 PI-PCs produced under different manufacturing methods. MATERIALS AND METHODS Selected in vitro parameters of metabolism, activation, and storage were analyzed for the different manufacturing periods to compare PI-PCs versus conventional PCs (C-PCs) resuspended in different PAS. RESULTS AND DISCUSSION All BC-PCs met quality standards for pH and dose and residual leucocytes. As expected, storage time correlated with increased lactate, LDH, Annexin V, CD62, sCD40 L levels and decreased glucose and pH. With PAS-IIIM, higher levels of glucose were observed toward the end of shelf life (p < 0.0001) with lower platelet activation markers Annexin V (p = 0.038) and CD62 (p = 0.0006). Following PI implementation, a low expire rate of <0.5% was observed. While a 2.3% mean increase in the production of PCs occurred from 2011 to 2015, the distribution of red blood cell concentrates dropped by 4.4%. A mean incidence of 0.14% for transfusion-related adverse reaction was observed while PI-PCs were distributed, similar to the one observed with C-PCs. Overall, PI-PCs prepared in additive solutions consistently met quality standards. Those prepared in PAS-IIIM appeared to have better retention of in vitro characteristics compared to PAS-III though all demonstrated functionality and clinical effectiveness.
Collapse
Affiliation(s)
| | - Marion C Lanteri
- Department of Scientific Affairs, Cerus Corporation, Concord, California, USA
| | - Carina Arcas Otero
- Axencia Galega de Sangue, Órganos e Tecidos Santiago de Compostela, Spain
| | | | | |
Collapse
|
11
|
Johnson L, Cameron M, Waters L, Padula MP, Marks DC. The impact of refrigerated storage of UVC pathogen inactivated platelet concentrates on in vitro
platelet quality parameters. Vox Sang 2018; 114:47-56. [DOI: 10.1111/vox.12730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Lacey Johnson
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
| | - Mathew Cameron
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Lauren Waters
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility; Faculty of Science; University of Technology Sydney; Sydney NSW Australia
| | - Denese C. Marks
- Research and Development; Australian Red Cross Blood Service; Sydney NSW Australia
- Sydney Medical School; University of Sydney; Sydney NSW Australia
| |
Collapse
|
12
|
Marks DC, Johnson L. Assays for phenotypic and functional characterization of cryopreserved platelets. Platelets 2018; 30:48-55. [DOI: 10.1080/09537104.2018.1514108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
- Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| |
Collapse
|
13
|
Systems analysis of metabolism in platelet concentrates during storage in platelet additive solution. Biochem J 2018; 475:2225-2240. [DOI: 10.1042/bcj20170921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Platelets (PLTs) deteriorate over time when stored within blood banks through a biological process known as PLT storage lesion (PSL). Here, we describe the refinement of the biochemical model of PLT metabolism, iAT-PLT-636, and its application to describe and investigate changes in metabolism during PLT storage. Changes in extracellular acetate and citrate were measured in buffy coat and apheresis PLT units over 10 days of storage in the PLT additive solution T-Sol. Metabolic network analysis of these data was performed alongside our prior metabolomics data to describe the metabolism of fresh (days 1–3), intermediate (days 4–6), and expired (days 7–10) PLTs. Changes in metabolism were studied by comparing metabolic model flux predictions of iAT-PLT-636 between stages and between collection methods. Extracellular acetate and glucose contribute most to central carbon metabolism in PLTs. The anticoagulant citrate is metabolized in apheresis-stored PLTs and is converted into aconitate and, to a lesser degree, malate. The consumption of nutrients changes during storage and reflects altered PLT activation profiles following their collection. Irrespective of the collection method, a slowdown in oxidative phosphorylation takes place, consistent with mitochondrial dysfunction during PSL. Finally, the main contributors to intracellular ammonium and NADPH are highlighted. Future optimization of flux through these pathways provides opportunities to address intracellular pH changes and reactive oxygen species, which are both of importance to PSL. The metabolic models provide descriptions of PLT metabolism at steady state and represent a platform for future PLT metabolic research.
Collapse
|
14
|
Bashir S, Meli A, Cardigan R. In vitroquality of apheresis platelets divided into paediatric-sized units and stored in PVC bags plasticised with TOTM, BTHC or DINCH. Transfus Med 2018; 28:380-385. [DOI: 10.1111/tme.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/30/2022]
Affiliation(s)
- S. Bashir
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
| | - A. Meli
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
| | - R. Cardigan
- Component Development Laboratory, NHS Blood and Transplant; Cambridge UK
- Department of Haematology; University of Cambridge; Cambridge UK
| |
Collapse
|
15
|
Ghasemzadeh M, Hosseini E, Roudsari ZO, Zadkhak P. Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: Does endogenous ROS generation downregulate platelet adhesive function? Thromb Res 2018; 163:153-161. [DOI: 10.1016/j.thromres.2018.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/02/2018] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
|
16
|
Vucic M, Stanojkovic Z, Antic A, Vucic J, Pavlovic V. Evaluation of platelet activation in leukocyte-depleted platelet concentrates during storage. Bosn J Basic Med Sci 2018; 18:29-34. [PMID: 28926321 DOI: 10.17305/bjbms.2017.2321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/14/2023] Open
Abstract
Structural and functional changes in platelets during storage can lead to the loss of platelet reactivity and response. Our aim was to evaluate leukocyte-depleted platelet concentrates on storage days 0, 3 and 5, obtained by in-line filtration. In non-filtered platelet concentrates (NF-PC) group, 180 whole blood units were collected with quadruple blood bags and then compared to another group of 180 whole blood units (leukocyte-depleted platelet concentrates [LD-PC]), collected in Imuflex Whole Blood Filter Saving Platelets (WB-SP) bags with an integrated leukoreduction filter, with regard to the platelet quality and characteristics. The efficacy of the two techniques for platelet concentrate preparation was evaluated by white blood cell (WBC) and platelet count on day 0. The partial pressure of oxygen (pO2), pH, platelets positive for P-selectin (CD62P), CD63, cluster of differentiation 42b (CD42b), phosphatidylserine (PS), and mitochondrial membrane potential (MMP) were analyzed during the storage in both groups. A significantly lower WBC count and higher platelet count was observed in LD-PC compared to NF-PC group, indicating the overall efficacy of the first technique. During the 5-day storage, pH and pO2 decreased in both groups. In LD-PC group, higher pH, increased pO2 and decreased platelet surface expression of CD62P, CD63 and PS were observed compared to NF-PC group. In both groups, the percentage of CD42b positive platelets and MMP did not change significantly during the 5-day period. The assessment of different markers of platelet activation may be an effective tool in evaluating the quality of platelets during storage. A better understanding of platelet activation may provide new insights for developing a novel therapeutic approach in the manipulation of platelet aggregation.
Collapse
Affiliation(s)
- Miodrag Vucic
- Clinic of Hematology and Clinical Immunology, Medical Faculty, University of Nis, Nis, Serbia.
| | | | | | | | | |
Collapse
|
17
|
van Hout FMA, van der Meer PF, Wiersum-Osselton JC, Middelburg RA, Schipperus MR, van der Bom JG, Kerkhoffs JL. Transfusion reactions after transfusion of platelets stored in PAS-B, PAS-C, or plasma: a nationwide comparison. Transfusion 2018; 58:1021-1027. [PMID: 29405304 DOI: 10.1111/trf.14509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets (PLTs) stored in PLT additive solution (PAS) are associated with fewer allergic reactions than plasma-stored PLTs. However, earlier studies could not provide conclusive evidence on febrile reactions and did not analyze other transfusion reactions separately due to limited sample size. We therefore compared incidences of all transfusion reactions of PAS-B-PLTs, PAS-C-PLTs, and plasma-PLTs. STUDY DESIGN AND METHODS In this observational study, all transfusion reactions reported to the national hemovigilance office of the Netherlands from 2006 to 2015 were included. RESULTS During the study period, a total of 2407 transfusion reactions after PLT transfusions were reported. In that period 553,267 pooled buffy coat-derived PLT units were issued, of which 83,884 were stored in PAS-B, 45,728 in PAS-C, and 423,655 in plasma. Regarding transfusion-related circulatory overload, transfusion-related acute lung injury, and "other reactions" no significant differences were observed between the PLT products. When PAS-B-PLT transfusions were compared to plasma-PLT transfusions, the overall relative risk (RR; 95% confidence interval [CI]) of transfusion reactions was 0.99 (0.88-1.11); for allergic and febrile nonhemolytic transfusion reactions (FNHTRs) it was 0.66 (0.55-0.80) and 1.54 (1.27-1.86), respectively. When PAS-C-PLTs were compared to plasma-PLTs, the RR (95% CI) was 0.56 (0.46-0.68) for all transfusion reactions, 0.38 (0.28-0.52) for allergic reactions, and 0.82 (0.59-1.13) for FNHTRs. When PAS-C-PLTs were compared to PAS-B-PLTs, for all reactions the RR (95% CI) was 0.56 (0.45-0.70) for allergic reactions 0.58 (0.40-0.82), and for FNHTRs 0.53 (0.37-0.75). CONCLUSIONS PAS-C-PLTs are associated with fewer transfusion reactions compared to plasma-PLTs and compared to PAS-B-PLTs.
Collapse
Affiliation(s)
- Fabienne M A van Hout
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Johanna C Wiersum-Osselton
- Transfusion and Transplantation Reactions in Patients, Dutch National Hemovigilance and Biovigilance Office, Leiden, the Netherlands
| | - Rutger A Middelburg
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin R Schipperus
- Transfusion and Transplantation Reactions in Patients, Dutch National Hemovigilance and Biovigilance Office, Leiden, the Netherlands.,Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Johanna G van der Bom
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jean-Louis Kerkhoffs
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands.,Department of Hematology, Haga Teaching Hospital, The Hague, the Netherlands
| |
Collapse
|
18
|
Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs. Transfus Apher Sci 2018; 57:76-81. [DOI: 10.1016/j.transci.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
|
19
|
Yan Y, Xie R, Zhang Q, Zhu X, Han J, Xia R. Bcl-x L/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets. Platelets 2017; 30:75-80. [PMID: 29125379 DOI: 10.1080/09537104.2017.1371289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bcl-2 family proteins play key roles in the intrinsic apoptosis pathway in platelets, with both pro- and antiapoptotic protein expressions regulating survival during ex vivo storage. We detected a significant decrease in antiapoptotic Bcl-xL and increase in proapoptotic Bak expression on the third day of storage and as a result the ratio of Bak:Bcl-xL also decreased. Moreover, we identified an interaction between Bcl-xL and Bak. These shifts corresponded with activation of the apoptotic pathway, suggesting these proteins might play an important role in platelet survival. We then performed bioinformatic analysis to gain insight into protein expression regulation during storage. This identified a potential binding site of the microRNA (miRNA) let-7b in the 3'-UTR of the Bcl-xL gene, which we confirmed by a dual-luciferase reporter assay. We also determined that let-7b was upregulated during platelet storage, and let-7b transfection influenced Bcl-xL and Bak protein, but not mRNA, expression. Together, these data suggest that only posttranscriptional mechanisms are available for regulating gene expression in anucleate platelets.
Collapse
Affiliation(s)
- Yuzhong Yan
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Rufeng Xie
- b Blood Engineering Laboratory, Shanghai Blood Center , Shanghai , China
| | - Qi Zhang
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Xinfang Zhu
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Jia Han
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| | - Rong Xia
- a Department of Transfusion Medicine , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
20
|
Waters L, Padula MP, Marks DC, Johnson L. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Transfusion 2017; 57:2845-2857. [PMID: 28905392 DOI: 10.1111/trf.14310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Room temperature-stored (20-24°C) platelets (PLTs) have a shelf life of 5 days, making it logistically challenging to supply remote medical centers with PLT products. Cryopreservation of PLTs in dimethyl sulfoxide (DMSO) and storage at -80°C enables an extended shelf life up to 2 years. Although cryopreserved PLTs have been widely characterized under resting conditions, their ability to undergo agonist-induced activation is yet to be fully explored. STUDY DESIGN AND METHODS Buffy coat PLTs were cryopreserved at -80°C with 5% to 6% DMSO and sampled before freezing and after thawing. PLTs were analyzed under resting conditions and after agonist stimulation with adenosine diphosphate, collagen, or thrombin receptor-activating peptide-6. The expression of activation markers, microparticle formation, and calcium mobilization were analyzed by flow cytometry. Soluble PLT proteins present in the PLT supernatant were examined by enzyme-linked immunosorbent assay. Protein phosphorylation was investigated with Western blotting. RESULTS After cryopreservation, PLTs displayed increased surface activation markers and higher basal calcium levels. Cryopreserved PLTs demonstrated diminished aggregation responses. Additionally, cryopreserved PLTs showed a limited ability to become activated (as measured by CD62P and phosphatidylserine exposure and cytokine release) after agonist stimulation. A reduction in the abundance and phosphorylation of key signaling proteins (Akt, Src, Lyn, ERK, and p38) was seen in cryopreserved PLTs. CONCLUSIONS Cryopreservation of PLTs induces dramatic changes to the basal PLT phenotype and renders them largely nonresponsive to agonist stimulation, likely due to the alterations in signal transduction. Therefore, further efforts are required to understand how cryopreserved PLTs achieve their hemostatic effect once transfused.
Collapse
Affiliation(s)
- Lauren Waters
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| |
Collapse
|
21
|
Could Microparticles Be the Universal Quality Indicator for Platelet Viability and Function? JOURNAL OF BLOOD TRANSFUSION 2016; 2016:6140239. [PMID: 28053805 PMCID: PMC5178367 DOI: 10.1155/2016/6140239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
High quality means good fitness for the intended use. Research activity regarding quality measures for platelet transfusions has focused on platelet storage and platelet storage lesion. Thus, platelet quality is judged from the manufacturer's point of view and regulated to ensure consistency and stability of the manufacturing process. Assuming that fresh product is always superior to aged product, maintaining in vitro characteristics should preserve high quality. However, despite the highest in vitro quality standards, platelets often fail in vivo. This suggests we may need different quality measures to predict platelet performance after transfusion. Adding to this complexity, platelets are used clinically for very different purposes: platelets need to circulate when given as prophylaxis to cancer patients and to stop bleeding when given to surgery or trauma patients. In addition, the emerging application of platelet-rich plasma injections exploits the immunological functions of platelets. Requirements for quality of platelets intended to prevent bleeding, stop bleeding, or promote wound healing are potentially very different. Can a single measurable characteristic describe platelet quality for all uses? Here we present microparticle measurement in platelet samples, and its potential to become the universal quality characteristic for platelet production, storage, viability, function, and compatibility.
Collapse
|
22
|
Wood B, Padula MP, Marks DC, Johnson L. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Transfusion 2016; 56:2548-2559. [PMID: 27460096 DOI: 10.1111/trf.13723] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelets (PLTs) are currently stored at room temperature (22°C), which limits their shelf life, primarily due to the risk of bacterial growth. Alternatives to room temperature storage include PLT refrigeration (2-6°C), which inhibits bacterial growth, thus potentially allowing an extension of shelf life. Additionally, refrigerated PLTs appear more hemostatically active than conventional PLTs, which may be beneficial in certain clinical situations. However, the mechanisms responsible for this hemostatic function are not well characterized. The aim of this study was to assess the protein profile of refrigerated PLTs in an effort to understand these functional consequences. STUDY DESIGN AND METHODS Buffy coat PLTs were pooled, split, and stored either at room temperature (20-24°C) or under refrigerated (2-6°C) conditions (n = 8 in each group). PLTs were assessed for changes in external receptor expression and actin filamentation using flow cytometry. Intracellular proteomic changes were assessed using two-dimensional gel electrophoresis and Western blotting. RESULTS PLT refrigeration significantly reduced the abundance of glycoproteins (GPIb, GPIX, GPIIb, and GPIV) on the external membrane. However, refrigeration resulted in the increased expression of high-affinity integrins (αIIbβ3 and β1) and activation and apoptosis markers (CD62P, CD63, and phosphatidylserine). PLT refrigeration substantially altered the abundance and localization of several cytoskeletal proteins and resulted in an increase in actin filamentation, as measured by phalloidin staining. CONCLUSION Refrigerated storage of PLTs induces significant changes in the expression and localization of both surface-expressed and intracellular proteins. Understanding these proteomic changes may help to identify the mechanisms resulting in the refrigeration-associated alterations in PLT function and clearance.
Collapse
Affiliation(s)
- Ben Wood
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.,Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Blood Service, Alexandria, NSW, Australia.
| |
Collapse
|
23
|
Perspectives on the use of biomaterials to store platelets for transfusion. Biointerphases 2016; 11:029701. [DOI: 10.1116/1.4952450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Abstract
A goal of platelet storage is to maintain the quality of platelets from the point of donation to the point of transfusion - to suspend the aging process. This effort is judged by clinical and laboratory measures with varying degrees of success. Recent work gives encouragement that platelets can be maintained ex vivo beyond the current 5 -7 day shelf life whilst maintaining their quality, as measured by posttransfusion recovery and survival. However, additional measures are needed to validate the development of technologies that may further reduce the aging of stored platelets, or enhance their hemostatic properties.
Collapse
Affiliation(s)
- Peter A Smethurst
- a Components Development Laboratory, NHS Blood and Transplant, Cambridge, UK, and Department of Haematology , University of Cambridge , Cambridge , UK
| |
Collapse
|