1
|
Piccin A, Allameddine A, Spizzo G, Lappin KM, Prati D. Platelet Pathogen Reduction Technology-Should We Stay or Should We Go…? J Clin Med 2024; 13:5359. [PMID: 39336845 PMCID: PMC11432127 DOI: 10.3390/jcm13185359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The recent COVID-19 pandemic has significantly challenged blood transfusion services (BTS) for providing blood products and for keeping blood supplies available. The possibility that a similar pandemic event may occur again has induced researchers and transfusionists to investigate the adoption of new tools to prevent and reduce these risks. Similarly, increased donor travelling and globalization, with consequent donor deferral and donor pool reduction, have contributed to raising awareness on this topic. Although recent studies have validated the use of pathogen reduction technology (PRT) for the control of transfusion-transmitted infections (TTI) this method is not a standard of care despite increasing adoption. We present a critical commentary on the role of PRT for platelets and on associated problems for blood transfusion services (BTS). The balance of the cost effectiveness of adopting PRT is also discussed.
Collapse
Affiliation(s)
- Andrea Piccin
- Northern Ireland Blood Transfusion Service (NIBTS), Belfast BT9 7TS, UK
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | | | - Gilbert Spizzo
- Department of Oncology, Brixen Hospital, 39042 Bolzano, Italy
| | - Katrina M Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Daniele Prati
- Servizio Trasfusionale, Ospedale Ca' Granda, 20122 Milano, Italy
| |
Collapse
|
2
|
Stempel JM, Podoltsev NA, Dosani T. Supportive Care for Patients With Myelodysplastic Syndromes. Cancer J 2023; 29:168-178. [PMID: 37195773 DOI: 10.1097/ppo.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes are a heterogeneous group of bone marrow disorders characterized by ineffective hematopoiesis, progressive cytopenias, and an innate capability of progressing to acute myeloid leukemia. The most common causes of morbidity and mortality are complications related to myelodysplastic syndromes rather than progression to acute myeloid leukemia. Although supportive care measures are applicable to all patients with myelodysplastic syndromes, they are especially essential in patients with lower-risk disease who have a better prognosis compared with their higher-risk counterparts and require longer-term monitoring of disease and treatment-related complications. In this review, we will address the most frequent complications and supportive care interventions used in patients with myelodysplastic syndromes, including transfusion support, management of iron overload, antimicrobial prophylaxis, important considerations in the era of COVID-19 (coronavirus infectious disease 2019), role of routine immunizations, and palliative care in the myelodysplastic syndrome population.
Collapse
|
3
|
Pitman JP, Payrat JM, Park MS, Liu K, Corash L, Benjamin RJ. Longitudinal analysis of annual national hemovigilance data to assess pathogen reduced platelet transfusion trends during conversion to routine universal clinical use and 7-day storage. Transfusion 2023; 63:711-723. [PMID: 36802055 DOI: 10.1111/trf.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND France converted to universal pathogen reduced (PR; amotosalen/UVA) platelets in 2017 and extended platelet component (PC) shelf-life from 5- to 7-days in 2018 and 2019. Annual national hemovigilance (HV) reports characterized longitudinal PC utilization and safety over 11 years, including several years prior to PR adoption as the national standard of care. METHODS Data were extracted from published annual HV reports. Apheresis and pooled buffy coat [BC] PC use was compared. Transfusion reactions (TRs) were stratified by type, severity, and causality. Trends were assessed for three periods: Baseline (2010-14; ~7% PR), Period 1 ([P1] 2015-17; 8%-21% PR), and Period 2 ([P2] 2018-20; 100% PR). RESULTS PC use increased by 19.1% between 2010 and 2020. Pooled BC PC production increased from 38.8% to 68.2% of total PCs. Annual changes in PCs issued averaged 2.4% per year at baseline, -0.02% (P1) and 2.8% (P2). The increase in P2 coincided with a reduction in the target platelet dose and extension to 7-day storage. Allergic reactions, alloimmunization, febrile non-hemolytic TRs, immunologic incompatibility, and ineffective transfusions accounted for >90% of TRs. Overall, TR incidence per 100,000 PCs issued declined from 527.9 (2010) to 345.7 (2020). Severe TR rates declined 34.8% between P1-P2. Forty-six transfusion-transmitted bacterial infections (TTBI) were associated with conventional PCs during baseline and P1. No TTBI were associated with amotosalen/UVA PCs. Infections with Hepatitis E (HEV) a non-enveloped virus resistant to PR, were reported in all periods. DISCUSSION Longitudinal HV analysis demonstrated stable PC utilization trends with reduced patient risk during conversion to universal 7-day amotosalen/UVA PCs.
Collapse
Affiliation(s)
- John P Pitman
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| | | | - Min-Sun Park
- Biostatistics and Data Management, Cerus Corporation, Concord, California, USA
| | - Kathy Liu
- Biostatistics and Data Management, Cerus Corporation, Concord, California, USA
| | - Laurence Corash
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| | - Richard J Benjamin
- Scientific and Medical Affairs, Cerus Corporation, Concord, California, USA
| |
Collapse
|
4
|
Corash L. Commentary on the 1985 transfusion paper by Horowitz, Wiebe, Lippin, and Stryker. Transfusion 2022; 62:1495-1505. [PMID: 35932389 DOI: 10.1111/trf.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Laurence Corash
- Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Snyder EL, Wheeler AP, Refaai M, Cohn CS, Poisson J, Fontaine M, Sehl M, Nooka AK, Uhl L, Spinella P, Fenelus M, Liles D, Coyle T, Becker J, Jeng M, Gehrie EA, Spencer BR, Young P, Johnson A, O'Brien JJ, Schiller GJ, Roback JD, Malynn E, Jackups R, Avecilla ST, Lin J, Liu K, Bentow S, Peng H, Varrone J, Benjamin RJ, Corash LM. Comparative risk of pulmonary adverse events with transfusion of pathogen reduced and conventional platelet components. Transfusion 2022; 62:1365-1376. [PMID: 35748490 PMCID: PMC9544211 DOI: 10.1111/trf.16987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelet transfusion carries risk of transfusion-transmitted infection (TTI). Pathogen reduction of platelet components (PRPC) is designed to reduce TTI. Pulmonary adverse events (AEs), including transfusion-related acute lung injury and acute respiratory distress syndrome (ARDS) occur with platelet transfusion. STUDY DESIGN An open label, sequential cohort study of transfusion-dependent hematology-oncology patients was conducted to compare pulmonary safety of PRPC with conventional PC (CPC). The primary outcome was the incidence of treatment-emergent assisted mechanical ventilation (TEAMV) by non-inferiority. Secondary outcomes included: time to TEAMV, ARDS, pulmonary AEs, peri-transfusion AE, hemorrhagic AE, transfusion reactions (TRs), PC and red blood cell (RBC) use, and mortality. RESULTS By modified intent-to-treat (mITT), 1068 patients received 5277 PRPC and 1223 patients received 5487 CPC. The cohorts had similar demographics, primary disease, and primary therapy. PRPC were non-inferior to CPC for TEAMV (treatment difference -1.7%, 95% CI: (-3.3% to -0.1%); odds ratio = 0.53, 95% CI: (0.30, 0.94). The cumulative incidence of TEAMV for PRPC (2.9%) was significantly less than CPC (4.6%, p = .039). The incidence of ARDS was less, but not significantly different, for PRPC (1.0% vs. 1.8%, p = .151; odds ratio = 0.57, 95% CI: (0.27, 1.18). AE, pulmonary AE, and mortality were not different between cohorts. TRs were similar for PRPC and CPC (8.3% vs. 9.7%, p = .256); and allergic TR were significantly less with PRPC (p = .006). PC and RBC use were not increased with PRPC. DISCUSSION PRPC demonstrated reduced TEAMV with no excess treatment-related pulmonary morbidity.
Collapse
Affiliation(s)
| | | | - Majed Refaai
- University of Rochester Medical CenterRochesterNew YorkUSA
| | - Claudia S. Cohn
- University of Minnesota Medical CenterMinneapolisMinnesotaUSA
| | | | | | - Mary Sehl
- UCLA Medical CenterLos AngelesCaliforniaUSA
| | | | - Lynne Uhl
- Harvard University – Beth Israel Deaconess HospitalBostonMassachusettsUSA
| | - Philip Spinella
- University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Maly Fenelus
- Memorial‐Sloan Kettering Medical CenterNew YorkNew YorkUSA
| | - Darla Liles
- East Carolina University Medical CenterGreenvilleNorth CarolinaUSA
| | | | | | | | | | | | - Pampee Young
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Andrew Johnson
- University of Minnesota Medical CenterMinneapolisMinnesotaUSA
| | | | | | | | - Elizabeth Malynn
- Harvard University – Beth Israel Deaconess HospitalBostonMassachusettsUSA
| | | | | | | | - Kathy Liu
- Cerus CorporationConcordCaliforniaUSA
| | | | | | | | | | | |
Collapse
|
6
|
Brixner V, Bug G, Pohler P, Krämer D, Metzner B, Voss A, Casper J, Ritter U, Klein S, Alakel N, Peceny R, Derigs HG, Stegelmann F, Wolf M, Schrezenmeier H, Thiele T, Seifried E, Kapels HH, Döscher A, Petershofen EK, Müller TH, Seltsam A. Efficacy of UVC-treated, pathogen-reduced platelets versus untreated platelets: a randomized controlled non-inferiority trial. Haematologica 2021; 106:1086-1096. [PMID: 33538149 PMCID: PMC8018132 DOI: 10.3324/haematol.2020.260430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UV-Platelets, a novel ultraviolet C (UVC) light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, non-inferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. The primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and per-protocol analyses were 18.2% (95% Confidence Interval [CI]: 6.4-30.1) and 18.7% (95% CI: 6.3-31.1), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to the next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (clinicaltrials gov. Identifier: DRKS00011156).
Collapse
Affiliation(s)
- Veronika Brixner
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | - Gesine Bug
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt/Main
| | | | - Doris Krämer
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Bernd Metzner
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Andreas Voss
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Jochen Casper
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Ulrich Ritter
- Department of Hematology and Oncology, Municipal Hospital Bremen, Bremen
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital, Mannheim
| | - Nael Alakel
- Medical Clinic I, Department of Hematology and Oncology, University Hospital, Carl Gustav Carus Faculty of Medicine, Dresden
| | - Rudolf Peceny
- Department of Hematology and Oncology, Municipal Hospital, Osnabrück
| | - Hans G Derigs
- Department of Hematology and Oncology, Municipal Hospital Frankfurt-Hoechst, Frankfurt/Main
| | | | - Martin Wolf
- Department of Hematology and Oncology, Municipal Hospital, Kassel
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessia, Ulm
| | - Thomas Thiele
- Institute for Immunology and Transfusion Medicine, University Medicine, Greifswald
| | - Erhard Seifried
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | | | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany; Bavarian Red Cross Blood Service, Nuremberg.
| |
Collapse
|
7
|
Rebulla P, Garban F, Meer PF, Heddle NM, McCullough J. A crosswalk tabular review on methods and outcomes from randomized clinical trials using pathogen reduced platelets. Transfusion 2020; 60:1267-1277. [DOI: 10.1111/trf.15791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Paolo Rebulla
- Department of Transfusion Medicine and HematologyFoundation IRCCS Caʼ Granda Ospedale Maggiore Policlinico Milan Italy
| | - Frederic Garban
- Department of HaematologyCentre Hospitalier Universitaire de Grenoble Alpes Grenoble France
| | - Pieter F. Meer
- Department of Product and Process DevelopmentSanquin Blood Bank Amsterdam The Netherlands
| | - Nancy M. Heddle
- Department of MedicineMcMaster University Hamilton Ontario Canada
| | - Jeffrey McCullough
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
8
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
9
|
Six KR, Devloo R, Compernolle V, Feys HB. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Transfusion 2019; 59:2662-2671. [PMID: 31187889 PMCID: PMC6851707 DOI: 10.1111/trf.15398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pathogen inactivation and cold or cryopreservation of platelets (PLTs) both significantly affect PLT function. It is not known how PLTs function when both are combined. STUDY DESIGN AND METHODS Standard PLT concentrates (PCs) were compared to pathogen‐inactivated PCs treated with amotosalen photochemical treatment (AS‐PCT) when stored at room (RT, 22°C), cold (4°C, n = 6), or cryopreservation (−80°C, n = 8) temperatures. The impact of alternative storage methods on both arms was studied in flow cytometry, light transmittance aggregometry, and hemostasis in collagen‐coated microfluidic flow chambers. RESULTS Platelet aggregation of cold‐stored AS‐PCT PLTs was 44% ± 11% compared to 57% ± 14% for cold‐stored standard PLTs and 58% ± 21% for RT‐stored AS‐PCT PLTs. Integrin activation of cold‐stored AS‐PCT PLTs was 53% ± 9% compared to 77% ± 6% for cold‐stored standard PLTs and 69% ± 13% for RT‐stored AS‐PCT PLTs. Coagulation of cold‐stored AS‐PCT PLTs started faster under flow (836 ± 140 sec) compared to cold‐stored standard PLTs (960 ± 192 sec) and RT‐stored AS‐PCT PLTs (1134 ± 220 sec). Fibrin formation rate under flow was also highest for cold‐stored AS‐PCT PLTs. This was in line with thrombin generation in static conditions because cold‐stored AS‐PCT PLTs generated 297 ± 47 nmol/L thrombin compared to 159 ± 33 nmol/L for cold‐stored standard PLTs and 83 ± 25 nmol/L for RT‐stored AS‐PCT PLTs. So despite decreased PLT activation and aggregation, cold storage of AS‐PCT PLTs promoted coagulation. PLT aggregation of cryopreserved AS‐PCT PLTs (23% ± 10%) was not significantly different from cryopreserved standard PLTs (25% ± 8%). CONCLUSION This study shows that cold storage of AS‐PCT PLTs further affects PLT activation and aggregation but promotes (pro)coagulation. Increased procoagulation was not observed after cryopreservation.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Rutter S, Snyder EL. How do we … integrate pathogen reduced platelets into our hospital blood bank inventory? Transfusion 2019; 59:1628-1636. [PMID: 30883807 PMCID: PMC6850142 DOI: 10.1111/trf.15241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
For more than 50 years there has been an ongoing effort to combat transfusion-transmitted infections and provide patients with the safest possible blood. This initiative has driven much of the research within the transfusion community. Initial methods included screening donors for travel histories to banned areas and for high-risk behaviors, but pathogen-specific assays performed at the collection and manufacturing sites also have become key factors in assuring blood safety. Many of these have focused on donor and laboratory-based screening for transfusion-transmitted diseases, as evidenced by the hepatitis and human immunodeficiency virus screening in the 1970s, 1980s, and 1990s. More recently, this effort has expanded to develop donor screening assays to identify other blood-borne pathogens, such as Zika and West Nile viruses and Babesia. Bacterial contamination of units of platelets (PLTs), however, remains a significant concern. In recent years, the Food and Drug Administration has approved rapid tests to identify bacterially contaminated PLT units in the blood bank before transfusion. Other supplemental methods have been developed, however, that aim to inactivate blood-borne pathogen(s) present in the blood product, rather than to rely on our ability to identify and interdict contaminated and infected components. Pathogen reduction technology, as this is referred to, provides a proactive way to further reduce the risk posed by transfusion-transmitted infections.
Collapse
Affiliation(s)
- Sara Rutter
- Department of Laboratory Medicine, Division of Transfusion MedicineYale University School of MedicineNew HavenConnecticut
| | - Edward L. Snyder
- Department of Laboratory Medicine, Division of Transfusion MedicineYale University School of MedicineNew HavenConnecticut
| |
Collapse
|
11
|
Sim J, Tsoi WC, Lee CK, Leung R, Lam CCK, Koontz C, Liu AY, Huang N, Benjamin RJ, Vermeij HJ, Stassinopoulos A, Corash L, Lie AKW. Transfusion of pathogen-reduced platelet components without leukoreduction. Transfusion 2019; 59:1953-1961. [PMID: 30919465 PMCID: PMC6850058 DOI: 10.1111/trf.15269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Leukoreduction (LR) of platelet concentrate (PC) has evolved as the standard to mitigate risks of alloimmunization, clinical refractoriness, acute transfusion reactions (ATRs), and cytomegalovirus infection, but does not prevent transfusion-associated graft-versus-host disease (TA-GVHD). Amotosalen-ultraviolet A pathogen reduction (A-PR) of PC reduces risk of transfusion-transmitted infection and TA-GVHD. In vitro data indicate that A-PR effectively inactivates WBCs and infectious pathogens. STUDY DESIGN AND METHODS A sequential cohort study evaluated A-PR without LR, gamma irradiation, and bacterial screening in hematopoietic stem cell transplant (HSCT) recipients. The first cohort received conventional PC (control) processed without LR, but with gamma irradiation and bacterial screening. The second cohort received A-PR PC (test) processed without: LR, bacterial screening, or gamma irradiation. The primary efficacy outcome was the 1-hour corrected count increment. The primary safety outcome was treatment-emergent ATR. Secondary outcomes included clinical refractoriness, and 100-day status for engraftment, TA-GVHD, HSCT-GVHD, infections, and mortality. RESULTS Mean corrected count increment (× 103 ) of 33 test PC recipients was similar (18.9 ± 8.8 vs. 16.6 ± 8.4; p = 0.296) to that of 31 control PC recipients. Test recipients had a reduced, but nonsignificant, incidence of ATR (test = 9.1%, Control = 19.4%; p = 0.296). The frequencies of clinical refractoriness (0 of 33 vs. 4 of 31 patients) and refractory transfusions (6.6% vs. 19.3%) were lower in the test cohort (p = 0.05 and 0.02), respectively. No patient in either cohort had TA-GVHD. Day 100 engraftment, HSCT-GVHD, mortality, and infectious disease complications were similar between cohorts. CONCLUSIONS This study indicated that A-PR PC without LR, gamma irradiation, or bacterial screening is feasible for support of HSCT.
Collapse
Affiliation(s)
- Joycelyn Sim
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai Chiu Tsoi
- Hong Kong Red Cross Blood Transfusion Service, Yau Ma Tei, Hong Kong
| | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Yau Ma Tei, Hong Kong
| | - Rock Leung
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Clarence C K Lam
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | | | | | | | | | | | - Albert K W Lie
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
12
|
|
13
|
Castrillo Fernández A, Lanteri MC, Arcas Otero C, Díaz Pereira A, Adelantado Pérez M. In vitro evaluation of pathogen inactivated platelet quality: An 8 year experience of routine use in Galicia, Spain. Transfus Apher Sci 2018; 58:87-93. [PMID: 30579750 DOI: 10.1016/j.transci.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) treated by the pathogen inactivation technology (PI) using amotosalen and UVA illumination (PI-PCs) can be manufactured in additive solutions (PAS-III and PAS-IIIM) or in 100% Plasma. Quality control (QC) is an integral part of the production. We capitalized on our ongoing QC program to capture 8 years-worth of data on parameters related to the quality of 116,214 PI-PCs produced under different manufacturing methods. MATERIALS AND METHODS Selected in vitro parameters of metabolism, activation, and storage were analyzed for the different manufacturing periods to compare PI-PCs versus conventional PCs (C-PCs) resuspended in different PAS. RESULTS AND DISCUSSION All BC-PCs met quality standards for pH and dose and residual leucocytes. As expected, storage time correlated with increased lactate, LDH, Annexin V, CD62, sCD40 L levels and decreased glucose and pH. With PAS-IIIM, higher levels of glucose were observed toward the end of shelf life (p < 0.0001) with lower platelet activation markers Annexin V (p = 0.038) and CD62 (p = 0.0006). Following PI implementation, a low expire rate of <0.5% was observed. While a 2.3% mean increase in the production of PCs occurred from 2011 to 2015, the distribution of red blood cell concentrates dropped by 4.4%. A mean incidence of 0.14% for transfusion-related adverse reaction was observed while PI-PCs were distributed, similar to the one observed with C-PCs. Overall, PI-PCs prepared in additive solutions consistently met quality standards. Those prepared in PAS-IIIM appeared to have better retention of in vitro characteristics compared to PAS-III though all demonstrated functionality and clinical effectiveness.
Collapse
Affiliation(s)
| | - Marion C Lanteri
- Department of Scientific Affairs, Cerus Corporation, Concord, California, USA
| | - Carina Arcas Otero
- Axencia Galega de Sangue, Órganos e Tecidos Santiago de Compostela, Spain
| | | | | |
Collapse
|
14
|
Levy JH, Neal MD, Herman JH. Bacterial contamination of platelets for transfusion: strategies for prevention. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:271. [PMID: 30367640 PMCID: PMC6204059 DOI: 10.1186/s13054-018-2212-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
Platelet transfusions carry greater risks of infection, sepsis, and death than any other blood product, owing primarily to bacterial contamination. Many patients may be at particular risk, including critically ill patients in the intensive care unit. This narrative review provides an overview of the problem and an update on strategies for the prevention, detection, and reduction/inactivation of bacterial contaminants in platelets. Bacterial contamination and septic transfusion reactions are major sources of morbidity and mortality. Between 1:1000 and 1:2500 platelet units are bacterially contaminated. The skin bacterial microflora is a primary source of contamination, and enteric contaminants are rare but may be clinically devastating, while platelet storage conditions can support bacterial growth. Donor selection, blood diversion, and hemovigilance are effective but have limitations. Biofilm-producing species can adhere to biological and non-biological surfaces and evade detection. Primary bacterial culture testing of apheresis platelets is in routine use in the US. Pathogen reduction/inactivation technologies compatible with platelets use ultraviolet light-based mechanisms to target nucleic acids of contaminating bacteria and other pathogens. These methods have demonstrated safety and efficacy and represent a proactive approach for inactivating contaminants before transfusion to prevent transfusion-transmitted infections. One system, which combines ultraviolet A and amotosalen for broad-spectrum pathogen inactivation, is approved in both the US and Europe. Current US Food and Drug Administration recommendations advocate enhanced bacterial testing or pathogen reduction/inactivation strategies (or both) to further improve platelet safety. Risks of bacterial contamination of platelets and transfusion-transmitted infections have been significantly mitigated, but not eliminated, by improvements in prevention and detection strategies. Regulatory-approved technologies for pathogen reduction/inactivation have further enhanced the safety of platelet transfusions. Ongoing development of these technologies holds great promise.
Collapse
Affiliation(s)
- Jerrold H Levy
- Duke University Hospital, 2301 Erwin Road, Durham, NC, 27710, USA.
| | - Matthew D Neal
- University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Jay H Herman
- Thomas Jefferson University Hospital, 111 S. 11th Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
15
|
Ravanat C, Dupuis A, Marpaux N, Naegelen C, Mourey G, Isola H, Laforêt M, Morel P, Gachet C. In vitro
quality of amotosalen‐
UVA
pathogen‐inactivated mini‐pool plasma prepared from whole blood stored overnight. Vox Sang 2018; 113:622-631. [DOI: 10.1111/vox.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Catherine Ravanat
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Arnaud Dupuis
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | | | | | - Guillaume Mourey
- EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
- Université Bourgogne Franche Comté INSERM EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
| | - Herve Isola
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Michel Laforêt
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Pascal Morel
- EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
- Université Bourgogne Franche Comté INSERM EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
| | - Christian Gachet
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| |
Collapse
|
16
|
Spindler-Raffel E, Benjamin RJ, McDonald CP, Ramirez-Arcos S, Aplin K, Bekeredjian-Ding I, de Korte D, Gabriel C, Gathof B, Hanschmann KM, Hourfar K, Ingram C, Jacobs MR, Keil SD, Kou Y, Lambrecht B, Marcelis J, Mukhtar Z, Nagumo H, Niekerk T, Rojo J, Marschner S, Satake M, Seltsam A, Seifried E, Sharafat S, Störmer M, Süßner S, Wagner SJ, Yomtovian R. Enlargement of the WHO international repository for platelet transfusion-relevant bacteria reference strains. Vox Sang 2017; 112:713-722. [PMID: 28960367 DOI: 10.1111/vox.12548] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Interventions to prevent and detect bacterial contamination of platelet concentrates (PCs) have reduced, but not eliminated the sepsis risk. Standardized bacterial strains are needed to validate detection and pathogen reduction technologies in PCs. Following the establishment of the First International Reference Repository of Platelet Transfusion-Relevant Bacterial Reference Strains (the 'repository'), the World Health Organization (WHO) Expert Committee on Biological Standardisation (ECBS) endorsed further repository expansion. MATERIALS AND METHODS Sixteen bacterial strains, including the four repository strains, were distributed from the Paul-Ehrlich-Institut (PEI) to 14 laboratories in 10 countries for enumeration, identification and growth measurement on days 2, 4 and 7 after low spiking levels [10-25 colony-forming units (CFU)/PC bag]. Spore-forming (Bacillus cereusPEI-B-P-07-S, Bacillus thuringiensisPEI-B-P-57-S), Gram-negative (Enterobacter cloacaePEI-B-P-43, Morganella morganiiPEI-B-P-74, PEI-B-P-91, Proteus mirabilisPEI-B-P-55, Pseudomonas fluorescensPEI-B-P-77, Salmonella choleraesuisPEI-B-P-78, Serratia marcescensPEI-B-P-56) and Gram-positive (Staphylococcus aureusPEI-B-P-63, Streptococcus dysgalactiaePEI-B-P-71, Streptococcus bovisPEI-B-P-61) strains were evaluated. RESULTS Bacterial viability was conserved after transport to the participating laboratories with one exception (M. morganiiPEI-B-P-74). All other strains showed moderate-to-excellent growth. Bacillus cereus, B. thuringiensis, E. coli, K. pneumoniae, P. fluorescens, S. marcescens, S. aureus and S. dysgalactiae grew to >106 CFU/ml by day 2. Enterobacter cloacae, P. mirabilis, S. epidermidis, S. bovis and S. pyogenes achieved >106 CFU/ml at day 4. Growth of S. choleraesuis was lower and highly variable. CONCLUSION The WHO ECBS approved all bacterial strains (except M. morganiiPEI-B-P-74 and S. choleraesuisPEI-B-P-78) for repository enlargement. The strains were stable, suitable for spiking with low CFU numbers, and proliferation was independent of the PC donor.
Collapse
Affiliation(s)
| | | | - C P McDonald
- National Health Service Blood and Transplant, London, UK
| | | | - K Aplin
- National Health Service Blood and Transplant, London, UK
| | | | - D de Korte
- Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| | - C Gabriel
- Blood Centre Linz, Austrian Red Cross, Linz, Austria
| | - B Gathof
- Institute of Transfusion Medicine, University Hospital of Cologne, Cologne, Germany
| | | | - K Hourfar
- German Red Cross, Frankfurt/Main, Germany
| | - C Ingram
- Constantia Kloof, South African National Blood Service, Johannesburg, South Africa
| | - M R Jacobs
- Case Western Reserve University, Cleveland, OH, USA
| | - S D Keil
- Terumo BCT Biotechnologies, Lakewood, CO, USA
| | - Y Kou
- Canadian Blood Service, Ottawa, ON, Canada
| | - B Lambrecht
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - J Marcelis
- Elisabeth Hospital, Tilburg, The Netherlands
| | - Z Mukhtar
- Dow Safe Blood Transfusion Services, DUHS, Khi, Pakistan
| | - H Nagumo
- Japanese Red Cross, Tokyo, Japan
| | - T Niekerk
- Constantia Kloof, South African National Blood Service, Johannesburg, South Africa
| | - J Rojo
- Centro Nacional de la Transfusión Sanguínea, Mexico, Mexico
| | - S Marschner
- Terumo BCT Biotechnologies, Lakewood, CO, USA
| | - M Satake
- Japanese Red Cross, Tokyo, Japan
| | - A Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - E Seifried
- German Red Cross, Frankfurt/Main, Germany
| | - S Sharafat
- Dow University of Health Sciences, Khi, Pakistan
| | - M Störmer
- Institute of Transfusion Medicine, University Hospital of Cologne, Cologne, Germany
| | - S Süßner
- Blood Centre Linz, Austrian Red Cross, Linz, Austria
| | - S J Wagner
- Holland Laboratory, Transfusion Innovation Department, American Red Cross, Rockville, MD, USA
| | - R Yomtovian
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | | |
Collapse
|
17
|
Rebulla P, Milani S, Grazzini G. Response to "An unbalanced study that lacks power: a caution about IPTAS". Transfusion 2017; 57:2285-2287. [PMID: 28868737 DOI: 10.1111/trf.14210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Paolo Rebulla
- Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - Silvano Milani
- Laboratory of Medical Statistics and Biometry, Department of Clinical Sciences and Community Health, University of Milan, Milan
| | - Giuliano Grazzini
- Italian National Blood Center, National Institute of Health, Rome, Italy
| |
Collapse
|
18
|
Allain JP, Goodrich R. Pathogen reduction of whole blood: utility and feasibility. Transfus Med 2017; 27 Suppl 5:320-326. [PMID: 28875531 DOI: 10.1111/tme.12456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To collect information on pathogen reduction applied to whole blood. BACKGROUND Pathogen reduction (PR) of blood components has been developed over the past two decades, and pathogen-reduced fresh-frozen plasma and platelet concentrates are currently in clinical use. High cost and incomplete coverage of components make PR out of reach for low- and middle-income countries (LMIC). However, should PR become applicable to whole blood (WB), the main product transfused in sub-Saharan Africa, and be compatible with the preparation of clinically suitable components, cost would be minimised, and a range of safety measures in place at high cost in developed areas would become redundant. METHODS All articles called with "pathogen reduction", "pathogen inactivation" and "whole blood" were retrieved from Medline. References in articles were utilised. RESULTS One such PR technology (PRT) applied to WB has been developed and has shown efficacious against viruses, bacteria and parasites in vitro; and has been able to inactivate nucleated blood cells whilst retaining the ability to prepare components with acceptable characteristics. The efficacy of this WB PRT has been demonstrated in vivo using the inactivation of Plasmodium falciparum as a model and showing a high degree of correlation between in vitro and in vivo data. Obtaining further evidence of efficacy on other suitable targets is warranted. Shortening of the process, which is currently around 50 min, or increasing the number of units simultaneously processed would be necessary to make PRT WB conducive to LMIC blood services' needs. CONCLUSIONS Even if not 100% effective against agents that are present in high pathogen load titres, WB PRT could massively impact blood safety in LMIC by providing safer products at an affordable cost.
Collapse
Affiliation(s)
| | - R Goodrich
- Infectious Disease Research Center, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
19
|
Benjamin RJ, Braschler T, Weingand T, Corash LM. Hemovigilance monitoring of platelet septic reactions with effective bacterial protection systems. Transfusion 2017; 57:2946-2957. [PMID: 28840603 DOI: 10.1111/trf.14284] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Delayed, large-volume bacterial culture and amotosalen/ultraviolet-A light pathogen reduction are effective at reducing the risk of bacterial proliferation in platelet concentrates (PCs). Hemovigilance programs continue to receive reports of suspected septic transfusion reactions, most with low imputability. Here, we compile national hemovigilance data to determine the relative efficacy of these interventions. STUDY DESIGN AND METHODS Annual reports from the United Kingdom, France, Switzerland, and Belgium were reviewed between 2005 and 2016 to assess the risk of bacterial contamination and septic reactions. RESULTS Approximately 1.65 million delayed, large-volume bacterial culture-screened PCs in the United Kingdom and 2.3 million amotosalen/ultraviolet-A-treated PCs worldwide were issued with no reported septic fatalities. One definite, one possible, and 12 undetermined/indeterminate septic reactions and eight contaminated "near misses" were reported with delayed, large-volume bacterial cultures between 2011 and 2016, for a lower false-negative culture rate than that in the previous 5 years (5.4 vs. 16.3 per million: odds ratio, 3.0; 95% confidence interval, 1.4-6.5). Together, the Belgian, Swiss, and French hemovigilance programs documented zero probable or definite/certain septic reactions with 609,290 amotosalen/ultraviolet-A-treated PCs (<1.6 per million). The rates were significantly lower than those reported with concurrently transfused, nonpathogen-reduced PCs in Belgium (<4.4 vs. 35.6 per million: odds ratio, 8.1; 95% confidence interval,1.1-353.3) and with historic septic reaction rates in Switzerland (<6.0 vs. 82.9 per million: odds ratio, 13.9; 95% confidence interval, 2.1-589.2), and the rates tended to be lower than those from concurrently transfused, nonpathogen-reduced PCs in France (<4.7 vs. 19.0 per million: odds ratio, 4.1; 95% confidence interval, 0.7-164.3). CONCLUSION Pathogen reduction and bacterial culture both reduced the incidence of septic reactions, although under-reporting and strict imputability criteria resulted in an underestimation of risk.
Collapse
Affiliation(s)
| | | | - Tina Weingand
- Blutspendedienst Zentralschweiz SRK, Luzern, Switzerland
| | | |
Collapse
|
20
|
Di Minno G, Navarro D, Perno CF, Canaro M, Gürtler L, Ironside JW, Eichler H, Tiede A. Pathogen reduction/inactivation of products for the treatment of bleeding disorders: what are the processes and what should we say to patients? Ann Hematol 2017; 96:1253-1270. [PMID: 28624906 PMCID: PMC5486800 DOI: 10.1007/s00277-017-3028-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
Patients with blood disorders (including leukaemia, platelet function disorders and coagulation factor deficiencies) or acute bleeding receive blood-derived products, such as red blood cells, platelet concentrates and plasma-derived products. Although the risk of pathogen contamination of blood products has fallen considerably over the past three decades, contamination is still a topic of concern. In order to counsel patients and obtain informed consent before transfusion, physicians are required to keep up to date with current knowledge on residual risk of pathogen transmission and methods of pathogen removal/inactivation. Here, we describe pathogens relevant to transfusion of blood products and discuss contemporary pathogen removal/inactivation procedures, as well as the potential risks associated with these products: the risk of contamination by infectious agents varies according to blood product/region, and there is a fine line between adequate inactivation and functional impairment of the product. The cost implications of implementing pathogen inactivation technology are also considered.
Collapse
Affiliation(s)
- Giovanni Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Regional Reference Centre for Coagulation Disorders, Federico II University, Via S. Pansini 5, 80131, Naples, Italy.
| | - David Navarro
- Department of Microbiology, Microbiology Service, Hospital Clínico Universitario, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Mariana Canaro
- Department of Hemostasis and Thrombosis, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Lutz Gürtler
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, University of München, Munich, Germany
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research and Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg, Germany
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Stivala S, Gobbato S, Infanti L, Reiner MF, Bonetti N, Meyer SC, Camici GG, Lüscher TF, Buser A, Beer JH. Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance. Haematologica 2017; 102:1650-1660. [PMID: 28729303 PMCID: PMC5622849 DOI: 10.3324/haematol.2017.164137] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/13/2017] [Indexed: 01/03/2023] Open
Abstract
Amotosalen and ultraviolet A (UVA) photochemical-based pathogen reduction using the Intercept™ Blood System (IBS) is an effective and established technology for platelet and plasma components, which is adopted in more than 40 countries worldwide. Several reports point towards a reduced platelet function after Amotosalen/UVA exposure. The study herein was undertaken to identify the mechanisms responsible for the early impairment of platelet function by the IBS. Twenty-five platelet apheresis units were collected from healthy volunteers following standard procedures and split into 2 components, 1 untreated and the other treated with Amotosalen/UVA. Platelet impedance aggregation in response to collagen and thrombin was reduced by 80% and 60%, respectively, in IBS-treated units at day 1 of storage. Glycoprotein Ib (GpIb) levels were significantly lower in IBS samples and soluble glycocalicin correspondingly augmented; furthermore, GpIbα was significantly more desialylated as shown by Erythrina Cristagalli Lectin (ECL) binding. The pro-apoptotic Bak protein was significantly increased, as well as the MAPK p38 phosphorylation and caspase-3 cleavage. Stored IBS-treated platelets injected into immune-deficient nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice showed a faster clearance. We conclude that the IBS induces platelet p38 activation, GpIb shedding and platelet apoptosis through a caspase-dependent mechanism, thus reducing platelet function and survival. These mechanisms are of relevance in transfusion medicine, where the IBS increases patient safety at the expense of platelet function and survival.
Collapse
Affiliation(s)
- Simona Stivala
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara Gobbato
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Martin F Reiner
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Nicole Bonetti
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland.,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Sara C Meyer
- Division of Hematology and Department of Biomedicine, University Hospital Basel, Switzerland
| | | | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Andreas Buser
- Regional Blood Transfusion Service of the Swiss Red Cross, Basel, Switzerland
| | - Jürg H Beer
- Laboratory for Platelet Research, Center for Molecular Cardiology, University of Zurich, Switzerland .,Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| |
Collapse
|
22
|
Nussbaumer W, Amato M, Schennach H, Astl M, Chen CY, Lin JS, Corash L, Benjamin RJ. Patient outcomes and amotosalen/UVA-treated platelet utilization in massively transfused patients. Vox Sang 2017; 112:249-256. [DOI: 10.1111/vox.12489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Affiliation(s)
- W. Nussbaumer
- Central Institute for Blood Transfusion and Immunology; Medical University Hospital Innsbruck; Innsbruck Austria
| | - M. Amato
- Central Institute for Blood Transfusion and Immunology; Medical University Hospital Innsbruck; Innsbruck Austria
| | - H. Schennach
- Central Institute for Blood Transfusion and Immunology; Medical University Hospital Innsbruck; Innsbruck Austria
| | - M. Astl
- Central Institute for Blood Transfusion and Immunology; Medical University Hospital Innsbruck; Innsbruck Austria
| | | | | | | | | |
Collapse
|
23
|
Amato M, Schennach H, Astl M, Chen CY, Lin JS, Benjamin RJ, Nussbaumer W. Impact of platelet pathogen inactivation on blood component utilization and patient safety in a large Austrian Regional Medical Centre. Vox Sang 2016; 112:47-55. [PMID: 28001297 DOI: 10.1111/vox.12456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND In clinical studies, pathogen inactivation (PI) of platelet concentrates (PC) with amotosalen and UVA light did not impact patient risk for haemorrhage but may affect transfusion frequency and component utilization. We evaluated the influence of platelet PI on PC, red cell concentrate (RCC) and plasma use and safety in routine practice in a large regional hospital. STUDY DESIGN AND METHODS Comparative effectiveness of conventional vs. PI-treated PC was analysed during two 21-month periods, before and after PI implementation. RESULTS Similar numbers of patients were transfused in the pre-PI (control, 1797) and post-PI (test, 1694) periods with comparable numbers of PC (8611 and 7705, respectively). The mean numbers of PC per patient transfused (4·8 vs. 4·5, P = 0·43) were not different but days of PC support (5·9 vs. 5·0, P < 0·01) decreased. Most patients received RCC (86·8% control vs. 84·8% test, P = 0·90) with similar mean numbers transfused (10·8 vs. 10·2 RCC, P = 0·22), and fewer patients (55·4% control vs. 44·7% test, P < 0·01) received less plasma units (mean 9·9 vs. 7·8, respectively, P < 0·01) in the test period. The frequencies of transfusion-related adverse events (AE) were comparable (1·3% vs. 1·4%, P = 0·95). Analysis of haematology-oncology (522 control, 452 test), cardiac surgery (739 control, 711 test), paediatric (157 control, 130 test) and neonate (23 control, 20 test) patients revealed no increase in PC, plasma and RCC utilization, or AE. CONCLUSION Component utilization and patient safety were not impacted by adoption of PI for PC. RCC use per patient was comparable, suggestive of no increase in significant bleeding.
Collapse
Affiliation(s)
- M Amato
- Central Institute for Blood Transfusion and Immunology, Medical University Hospital Innsbruck, Innsbruck, Austria
| | - H Schennach
- Central Institute for Blood Transfusion and Immunology, Medical University Hospital Innsbruck, Innsbruck, Austria
| | - M Astl
- Central Institute for Blood Transfusion and Immunology, Medical University Hospital Innsbruck, Innsbruck, Austria
| | - C Y Chen
- Cerus Corporation, Concord, CA, USA
| | - J-S Lin
- Cerus Corporation, Concord, CA, USA
| | | | - W Nussbaumer
- Central Institute for Blood Transfusion and Immunology, Medical University Hospital Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Benjamin RJ, Carter KL, Corash L. Amotosalen and ultraviolet-A treated platelets and plasma are safe and efficacious in active hemorrhage. Transfusion 2016; 56:2649-2650. [PMID: 27739155 DOI: 10.1111/trf.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023]
|
25
|
Weiskopf RB. What is innovation? Transfusion 2016; 56 Suppl 1:S3-5. [DOI: 10.1111/trf.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|