1
|
Gokarn A, Tembhare PR, Syed H, Sanyal I, Kumar R, Parab S, Khanka T, Punatar S, Kedia S, Ghogale SG, Deshpande N, Nikam Y, Girase K, Mirgh S, Jindal N, Bagal B, Chichra A, Nayak L, Bonda A, Rath S, Hiregoudar S, Poojary M, Saha S, Ojha S, Subramanian PG, Khattry N. Long-Term Cryopreservation of Peripheral Blood Stem Cell Harvest Using Low Concentration (4.35%) Dimethyl Sulfoxide with Methyl Cellulose and Uncontrolled Rate Freezing at -80 °C: An Effective Option in Resource-Limited Settings. Transplant Cell Ther 2023; 29:777.e1-777.e8. [PMID: 37678607 DOI: 10.1016/j.jtct.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Long-term cryopreservation of peripheral blood stem cells (PBSCs) is highly useful in the setting of tandem/multiple transplantations or treatment of relapse in the autologous hematopoietic stem cell transplantation (HSCT) setting. Even in allogeneic HSCT, donor lymphocyte infusions may be stored for months to years if excess stem cells are collected from donors. Cryopreservation is a delicate, complex, and costly procedure, and higher concentrations of dimethyl sulfoxide (DMSO), a commonly used cryoprotectant, can be toxic to cells and cause adverse effects in the recipient during infusions. In this study, we examined the effect of long-term cryopreservation using 4.35% DMSO (as final concentration) with methyl cellulose and uncontrolled rate freezing in a mechanical freezer (-80 °C) on the viability and colony-forming ability of CD34+ human PBSCs. For patients undergoing autologous HSCT, PBSCs were cryopreserved using DMSO (final concentration of 4.35%) with methyl cellulose. The post-thaw viability of PBSCs was determined using Trypan blue exclusion and flow cytometry-based 7-amino-actinomycin-D (FC-7AAD) methods. Concentrations of CD34+ stem cells and immune cell subsets in post-thaw PBSC harvest samples were assessed using multicolor flow cytometry, and the clonogenic potential of post-thaw stem cells was studied using a colony-forming unit (CFU) assay. CD34+ stem cell levels were correlated with the prestorage CD34 levels using the Pearson correlation test. The viability results in the Trypan blue dye exclusion method and the flow cytometry-based method were compared using Bland-Altman plots. We studied 26 PBSC harvest samples with a median cryopreservation duration of 6.6 years (range, 3.8 to 11.5 years). The median viability of post-thaw PBSCs was >80% using both methods, with a weak agreement between them (r = .03; P = .5). The median CD34+ stem cell count in the post-thaw samples was 9.13 × 106/kg (range, .44 to 26.27 × 106/kg). The CFU assay yielded a good proliferation and differentiation potential in post-thaw PBSCs, with a weak correlation between granulocyte macrophage CFU and CD34+ stem cell levels (r = .4; P = .05). Two samples that had been cryopreserved for >8 years showed low viability. Cryopreservation of PBSCs using 4.35% DMSO with methyl cellulose and uncontrolled freezing in a mechanical freezer at -80 °C allows the maintenance of long-term viability of PBSC for up to 8 years.
Collapse
Affiliation(s)
- Anant Gokarn
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Prashant R Tembhare
- Homi Bhabha National Institute, Mumbai, India; Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Hasan Syed
- Homi Bhabha National Institute, Mumbai, India; Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Isha Sanyal
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Rohit Kumar
- Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sarika Parab
- Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sachin Punatar
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Shweta Kedia
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sitaram G Ghogale
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Yuvraj Nikam
- Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sumeet Mirgh
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Nishant Jindal
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Akanksha Chichra
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Lingaraj Nayak
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Avinash Bonda
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sushmita Rath
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sumathi Hiregoudar
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Minal Poojary
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Suryatapa Saha
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Shashank Ojha
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Papagudi G Subramanian
- Homi Bhabha National Institute, Mumbai, India; Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Bahsoun S, Brown MJ, Coopman K, Akam EC. Cryopreservation of Human Bone Marrow Derived Mesenchymal Stem Cells at High Concentration Is Feasible. Biopreserv Biobank 2023; 21:450-457. [PMID: 36094454 DOI: 10.1089/bio.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: For stem cell therapies to be adopted in mainstream health care, robust, reliable, and cost-effective storage and transport processes must be developed. Cryopreservation remains the best current platform for this purpose, and freezing cells at high concentration may have many benefits, including savings on cost and storage space, facilitating transport logistics, and reducing cryoprotectant volume. Cells, such as mesenchymal stem cells (MSCs), are typically frozen at 1 million cells per milliliter (mL), but the aim of this study is to examine the post-thaw attributes of human bone marrow derived MSCs (hBM-MSCs) frozen at 1, 5, and 10 million cells per mL. Methods: Thawed cells were assessed for their morphology, phenotypic marker expression, viability, apoptosis level, metabolic activity, proliferation, and osteogenic and adipogenic differentiation. Results: In this study, for the first time, it is shown that all assessed cells expressed the typical MSC markers (CD90, CD105, and CD73) and lacked the expression of CD14, CD20, CD34, CD45, and HLA-DR. In addition, all cells showed elongated fibroblastic morphology. Post-thaw viability was retained with no difference among the three concentrations. Moreover, no significant statistical difference was observed in the post-thaw apoptosis level, metabolic activity, proliferation, and osteogenic potential, indicating that these cells are amenable to cryopreservation at higher concentrations. Conclusion: The results of this study are of paramount importance to the development of manufacturing processes around a useful freezing concentration when cells are targeted to be stored for at least 6 months.
Collapse
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Marie-Juliet Brown
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Elizabeth C Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
3
|
Ekpo MD, Boafo GF, Xie J, Liu X, Chen C, Tan S. Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics. Front Immunol 2022; 13:1030965. [PMID: 36275725 PMCID: PMC9579275 DOI: 10.3389/fimmu.2022.1030965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
4
|
Gao B, Shu Z, Ren S, Gao D. Biobanking: A foundation of life-science research and advancement. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Simonik O, Bubenickova F, Tumova L, Frolikova M, Sur VP, Beran J, Havlikova K, Hackerova L, Spevakova D, Komrskova K, Postlerova P. Boar Sperm Cryopreservation Improvement Using Semen Extender Modification by Dextran and Pentaisomaltose. Animals (Basel) 2022; 12:868. [PMID: 35405857 PMCID: PMC8997129 DOI: 10.3390/ani12070868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling. We targeted the analysis of in vitro qualitative sperm parameters such as motility, viability, mitochondrial activity, acrosome integrity, and DNA integrity. Non-penetrating polysaccharide-based cryoprotective agents interact with sperm surface proteins such as spermadhesins, which are recognized as fertility markers of boar sperm quality. The in silico docking study showed a moderate binding affinity of dextran and pentaisomaltose toward one specific spermadhesin known as AWN, which is located in the sperm plasma membrane. Pentaisomaltose formed a hydrophobic pocket for the AWN protein, and the higher energy of this protein-ligand complex compared with dextran was calculated. In addition, the root mean square deviation (RMSD) analysis for the molecular dynamics (MD) of both polysaccharides and AWN simulation suggests their interaction was highly stable. The in silico results were supported by in vitro experiments. In the experimental groups where glycerol was partially or entirely substituted, the use of pentaisomaltose resulted in improved sperm mitochondrial activity and DNA integrity after thawing when compared with dextran. In this paper, we demonstrate that pentaisomaltose, previously used for cryopreservation in hematopoietic stem cells, represents a promising compound for the elimination or reduction of glycerol in extenders for boar semen cryopreservation. This novel approach, using in silico computer prediction and in vitro testing, represents a promising technique to help identify new cryoprotectants for use in animal breeding or genetic resource programs.
Collapse
Affiliation(s)
- Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Filipa Bubenickova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
| | - Jan Beran
- Department of Zootechnical Sciences, Faculty of Agriculture, University of South Bohemia in Ceske Budejovice, Studentska 1668, 37005 Ceske Budejovice, Czech Republic;
| | - Katerina Havlikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Lenka Hackerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Daniela Spevakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic; (O.S.); (M.F.); (V.P.S.); (D.S.); (K.K.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic; (F.B.); (L.T.); (K.H.); (L.H.)
| |
Collapse
|
6
|
Kaushal R, Jahan S, McGregor C, Pineault N. Dimethyl sulfoxide-free cryopreservation solutions for hematopoietic stem cell grafts. Cytotherapy 2021; 24:272-281. [PMID: 34654640 DOI: 10.1016/j.jcyt.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS The use of effective methods for the cryopreservation of hematopoietic stem cells (HSCs) is vital to retain the maximum engraftment activity of cord blood units (CBUs). Current protocols entail the use of dimethyl sulfoxide (DMSO) as intracellular cryoprotective agent (CPA) and dextran and plasma proteins as extracellular CPAs, but DMSO is known to be cytotoxic, and its infusion in patients is associated with mild to moderate side effects. However, new, commercially available, DMSO-free cryopreservation solutions have been developed, but their capacity to protect HSCs remains poorly investigated. METHODS Herein the authors compared the capacity of four DMSO-free freezing media to cryopreserve cord blood (CB) HSCs: CryoProtectPureSTEM (CPP-STEM), CryoScarless (CSL), CryoNovo P24 (CN) and Pentaisomaltose (PIM). Clinical-grade DMSO/dextran solution was used as control. RESULTS Of the four cryopreservation solutions tested, the best post-thaw cell viability, recovery of viable CD45+ and CD34+ cells and potency were achieved with CPP-STEM, which was equal or superior to that seen with the control DMSO. CSL provided the second best post-thaw results followed by PIM, whereas CN was associated with modest viability and potency. Further work with CPP-STEM revealed that CB CD34-enriched HSCs and progenitors cryopreserved with CPP-STEM maintained high viability and growth expansion activity. In line with this, a pilot transplantation assay confirmed that CPP-STEM-protected CB grafts supported normal short- and long-term engraftment kinetics. CONCLUSIONS The authors' results suggest that new, valuable alternatives to DMSO are now available for the cryopreservation of HSCs and grafts, including CBUs.
Collapse
Affiliation(s)
- Richa Kaushal
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada
| | - Suria Jahan
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada
| | | | - Nicolas Pineault
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Centre for Innovation, Canadian Blood Services, Ottawa, Canada.
| |
Collapse
|
7
|
Fernandes SS, Limaye LS, Kale VP. Differentiated Cells Derived from Hematopoietic Stem Cells and Their Applications in Translational Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:29-43. [PMID: 34114129 DOI: 10.1007/5584_2021_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem cells (HSCs) and their development are one of the most widely studied model systems in mammals. In adults, HSCs are predominantly found in the bone marrow, from where they maintain homeostasis. Besides bone marrow and mobilized peripheral blood, cord blood is also being used as an alternate allogenic source of transplantable HSCs. HSCs from both autologous and allogenic sources are being applied for the treatment of various conditions like blood cancers, anemia, etc. HSCs can further differentiate to mature blood cells. Differentiation process of HSCs is being extensively studied so as to obtain a large number of pure populations of various differentiated cells in vitro so that they can be taken up for clinical trials. The ability to generate sufficient quantity of clinical-grade specialized blood cells in vitro would take the field of hematology a step ahead in translational medicine.
Collapse
Affiliation(s)
| | - Lalita S Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
8
|
Jahan S, Kaushal R, Pasha R, Pineault N. Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfus Med Rev 2021; 35:95-102. [PMID: 33640254 DOI: 10.1016/j.tmrv.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation is a well-established procedure for the treatment of many blood related malignancies and disorders. Before transplantation, HSC are collected and cryopreserved until use. The method of cryopreservation should preserve both the number and function of HSC and downstream progenitors responsible for long- and short-term engraftment, respectively. This is especially critical for cord blood grafts, since the cell number associated with this stem cell source is often limiting. Loss of function in cryopreserved cells occurs following cryoinjuries due to osmotic shock, dehydration, solution effects and mechanical damage from ice recrystallization during freezing and thawing. However, cryoinjuries can be reduced by 2 mitigation strategies; the use of cryoprotectants (CPAs) and use of control rate cooling. Currently, slow cooling is the most common method used for the cryopreservation of HSC graft. Moreover, dimethyl-sulfoxide (DMSO) and dextran are popular intracellular and extracellular CPAs used for HSC grafts, respectively. Yet, DMSO is toxic to cells and can cause significant side effects in stem cells' recipients. However, new CPAs and strategies are emerging that may soon replace DMSO. The aim of this review is to summarise key concepts in cryobiology and recent advances in the field of HSC cryobiology. Other important issues that need to be considered are also discussed such as transient warming events and thawing of HSC grafts.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada
| | - Richa Kaushal
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada; Biochemistry, Microbiology and Immunology department, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Cryopreservation of adipose-derived stromal/stem cells using 1–2% Me2SO (DMSO) in combination with pentaisomaltose: An effective and less toxic alternative to comparable freezing media. Cryobiology 2020; 96:207-213. [DOI: 10.1016/j.cryobiol.2020.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
|
10
|
Jahan S, Adam MK, Manesia JK, Doxtator E, Ben RN, Pineault N. Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion 2020; 60:769-778. [PMID: 32187691 DOI: 10.1111/trf.15759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet engraftment following cord blood (CB) transplantation remains a significant hurdle to this day. The uncontrolled growth of ice, a process referred to as ice recrystallization, is one of several mechanisms that lead to cell loss and decreased potency during freezing and thawing. We hypothesized that reducing cell damage induced by ice recrystallization in CB units (CBUs) would reduce losses of stem and progenitor cells and therefore improve engraftment. We previously demonstrated that the ice recrystallization inhibitor (IRI) N-(2-fluorophenyl)-D-gluconamide (IRI 2) increases the postthaw recovery of CB progenitors. Herein, we set out to ascertain whether IRI 2 can enhance platelet and bone marrow engraftment activity of hematopoietic stem cells (HSCs) in cryopreserved CBUs using a serial transplantation model. STUDY DESIGN AND METHODS CBUs were processed following standard volume/red blood cell reduction procedure and portions frozen with dimethyl sulfoxide (DMSO) supplemented or not with IRI 2. Thawed CB samples were serially transplanted into immunodeficient mice. RESULTS Our results show that supplementation of DMSO with IRI 2 had several beneficial effects. Specifically, higher levels of human platelets were observed in the peripheral blood (p < 0.05; n = 4) upon transplant of CBUs preserved with the IRIs. In addition, human BM chimerism and the number of human CFU progenitors in the bone marrow were superior in IRI 2 recipients compared to DMSO recipients. Moreover, IRI 2 had no negative impact on the multilineage differentiation and self-renewal activities of HSCs. DISCUSSION Taken together, these results demonstrate that supplementation of a hematopoietic graft with IRI can improve the postthaw engraftment activities of HSCs.
Collapse
Affiliation(s)
- Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Madeleine K Adam
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Emily Doxtator
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robert N Ben
- Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Shinde P, Khan N, Melinkeri S, Kale V, Limaye L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion 2018; 59:686-696. [PMID: 30456902 DOI: 10.1111/trf.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dendritic cell (DC) vaccination involves administration of multiple doses. Cryopreservation of tumor antigen-pulsed DCs can provide a ready to use vaccine source and eliminate the need of frequent withdrawal of the patient's blood for vaccine preparation. The aim of this study was to assess the effect of addition of trehalose in the freezing medium on the recovery of DCs after cryopreservation. STUDY DESIGN AND METHODS DCs were generated from mononuclear cells from apheresis samples of healthy donors. For long-term storage of 6 months, cells were frozen with a rate-controlled programmable freezer and stored in liquid nitrogen. For short-term storage of 1 month, cells were frozen and stored at -80°C. DCs frozen with Iscove's Modified Dulbecco's Medium + 10% dimethyl sulfoxide + 20% fetal bovine serum served as the control group, while the test group was additionally supplemented with 50 μg/mL of trehalose. After revival of control and test DCs, they were assessed for viability, morphology, phenotype, and functions. RESULTS The addition of trehalose to the conventional freezing medium helped to preserve the viability and functionality of DCs better than dimethyl sulfoxide alone in both long- and short-term cryopreservation. Trehalose also protected the mitochondrial membrane potential and cytoskeleton integrity of DCs, which are necessary for their functionality. Mediators of the intrinsic apoptotic pathway like Caspase-9 and Bim-1 were found to be low in the test. CONCLUSION Supplementation of conventional freezing medium with trehalose results in better quality of DCs revived after cryopreservation. This finding could help improve DC vaccine preparation for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Nikhat Khan
- National Centre for Cell Science, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | | | | |
Collapse
|
12
|
Abstract
Human umbilical cord represents a source of multipotent stromal cells of a supreme therapeutic potential. The cells can be isolated from either fresh or cryopreserved umbilical cord tissues. DMSO is a cryoprotectant most commonly used for preservation of umbilical cord tissues; however, cyto- and genotoxicity of this compound is evident and well documented. In the present study we performed successful cryopreservation of the umbilical cord tissue using other cryoprotectants: propylene glycol, ethylene glycol, and glycerol. Of these, 1.5 M ethylene glycol and 20% glycerol turned out to be the best in terms of the preservation of living cells within the frozen tissue, early onset of migration of these cells out of the thawed explants, and overall efficacy of multipotent stromal cell isolation. Cryobanking of tissues can improve availability of multiple cell products for medical purposes and promote the development of personalized medicine.
Collapse
|
13
|
Abstract
Transplants using peripheral blood hemopoietic stem/progenitor (PBHS) cells are widely performed for the treatment of patients with hematologic disorders in routine practice and clinical trials. Although the process from mobilization to infusion of PBHS cells has been mostly established, optimal conditions for each process remain undetermined. Adverse reactions caused by PBHS cell infusions have not been systematically recorded. In transplants using PBHS cells, a number of problems still exist. In this section, the current status of and future perspectives regarding PBHS cells are described.
Collapse
Affiliation(s)
- Kazuo Muroi
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
14
|
Gurruchaga H, Saenz Del Burgo L, Orive G, Hernandez RM, Ciriza J, Pedraz JL. Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. Int J Pharm 2018; 548:206-216. [PMID: 29969709 DOI: 10.1016/j.ijpharm.2018.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The low-temperature storage of therapeutic cell-based products plays a crucial role in their clinical translation for the treatment of diverse diseases. Although dimethylsulfoxide (DMSO) is the most successful cryoprotectant in slow freezing of microencapsulated cells, it has shown adverse effects after cryopreserved cell-based products implantation. Therefore, the search of alternative non-toxic cryoprotectants for encapsulated cells is continuously investigated to move from bench to the clinic. In this work, we investigated the low molecular-weight hyaluronan (low MW-HA), a natural non-toxic and non-sulfated glycosaminoglycan, as an alternative non-permeant cryoprotectant for the slow freezing cryopreservation of encapsulated cells. Cryopreservation with low MW-HA provided similar metabolic activity, cell dead and early apoptotic cell percentage and membrane integrity after thawing, than encapsulated cells stored with either DMSO 10% or Cryostor 10. However, the beneficial outcomes with low MW-HA were not comparable to DMSO with some encapsulated cell types, such as the human insulin secreting cell line, 1.1B4, maybe explained by the different expression of the CD44 surface receptor. Altogether, we can conclude that low MW-HA represents a non-toxic natural alternative cryoprotectant to DMSO for the cryopreservation of encapsulated cells.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Svalgaard JD, Talkhoncheh MS, Haastrup EK, Munthe-Fog L, Clausen C, Hansen MB, Andersen P, Gørløv JS, Larsson J, Fischer-Nielsen A. Pentaisomaltose, an Alternative to DMSO. Engraftment of Cryopreserved Human CD34 + Cells in Immunodeficient NSG Mice. Cell Transplant 2018; 27:1407-1412. [PMID: 30056762 PMCID: PMC6168988 DOI: 10.1177/0963689718786226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cell transplantation often involves the cryopreservation of stem cell products. Currently, the standard cryoprotective agent (CPA) is dimethyl sulfoxide (DMSO), which is known to cause concentration-related toxicity and side effects when administered to patients. Based on promising in vitro data from our previous study using pentaisomaltose (a 1 kDa subfraction of Dextran 1) as an alternative to DMSO for cryopreservation of hematopoietic progenitor cells (HPCs) from apheresis products, we proceeded to a preclinical model and compared the two CPAs with respect to engraftment of human hematopoietic stem and progenitor cells (HSPCs) in the immunodeficient NSG mouse model. Human HPCs from apheresis products were cryopreserved with either pentaisomaltose or DMSO, and the following outcomes were measured: (1) the post-thaw recovery of cryopreserved cells and clonogenic potential of CD34+ cells and (2) hematopoietic engraftment in NSG mice. We found that recovery and colony-forming cells data were comparable between pentaisomaltose and DMSO. The engraftment data revealed comparable human CD45+ levels in peripheral blood at 8 weeks and bone marrow at 16 weeks post transplantation. Additionally, the frequencies of CD34+CD38low/negative and myeloid/lymphoid cells in the bone marrow were comparable. We here demonstrated that long-term engrafting HSPCs were well preserved in pentaisomaltose and comparable to cells cryopreserved with DMSO. Although a clinical trial is necessary to translate these results into human use, the present data represent an important step toward the replacement of DMSO with a non-toxic alternative.
Collapse
Affiliation(s)
- Jesper Dyrendom Svalgaard
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Eva Kannik Haastrup
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Pernille Andersen
- 4 Department of Clinical Immunology, Stem Cell Facility, Herlev Hospital, Herlev, Denmark
| | - Jette Sønderskov Gørløv
- 5 Department of Hematology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jonas Larsson
- 2 Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anne Fischer-Nielsen
- 1 Department of Clinical Immunology, Cell Therapy Facility, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Patient-derived xenograft cryopreservation and reanimation outcomes are dependent on cryoprotectant type. J Transl Med 2018; 98:947-956. [PMID: 29520054 PMCID: PMC6072591 DOI: 10.1038/s41374-018-0042-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/14/2018] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Patient-derived xenografts (PDX) are being increasingly utilized in preclinical oncologic research. Maintaining large colonies of early generation tumor-bearing mice is impractical and cost-prohibitive. Optimal methods for efficient long-term cryopreservation and subsequent reanimation of PDX tumors are critical to any viable PDX program. We sought to compare the performance of "Standard" and "Specialized" cryoprotectant media on various cryopreservation and reanimation outcomes in PDX tumors. Standard (10% DMSO media) and Specialized (Cryostor®) media were compared between overall and matched PDX tumors. Primary outcome was reanimation engraftment efficiency (REE). Secondary outcomes included time to tumor formation (TTF), time to harvest (TTH), and potential loss of unique PDX lines. Overall 57 unique PDX tumors underwent 484 reanimation engraftment attempts after previous cryopreservation. There were 10 unique PDX tumors cryopreserved with Standard (71 attempts), 40 with Specialized (272 attempts), and 7 with both (141 attempts). Median frozen time of reanimated tumors was 29 weeks (max. 177). Tumor pathology, original primary PDX growth rates, frozen storage times, and number of implantations per PDX model were similar between cryoprotectant groups. Specialized media resulted in superior REE (overall: 82 vs. 39%, p < 0.0001; matched: 97 vs. 36%, p < 0.0001; >52 weeks cryostorage: 59 vs. 9%, p < 0.0001), shorter TTF (overall 24 vs. 54 days, p = 0.0051; matched 18 vs. 53 days, p = 0.0013) and shorter TTH (overall: 64 vs. 89 days, p = 0.009; matched: 47 vs. 88 days, p = 0.0005) compared to Standard. Specialized media demonstrated improved REE with extended duration cryostorage (p = 0.048) compared to Standard. Potential loss of unique PDX lines was lower with Specialized media (9 vs. 35%, p = 0.017). In conclusion, cryopreservation with a specialized cryoprotectant appears superior to traditional laboratory-based media and can be performed with reliable reanimation even after extended cryostorage.
Collapse
|
17
|
Ugraitskaya SV, Shishova NV, Gagarinskiy EL, Shvirst NE, Kaurova SA, Goltyaev MV, Zalomova LV, Kovtun AL, Fesenko EE. The Effect of Helium on Cryopreservation of HeLa and L929 Cells. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918030235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|