1
|
North A, Ling K, Ricaud G, Stankowski LF, Daly JA, Bentow S, Corash L, Benjamin RJ, Mufti N. In vivo genotoxicity assessment of N-(-9 acridinyl)-b-alanine hydrochloride (S-300) using a validated Pig-a mutagenesis assay. Transfusion 2024; 64:1097-1108. [PMID: 38716879 DOI: 10.1111/trf.17854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND N-(-9 acridinyl)-b-alanine hydrochloride (S-300) is the main byproduct of red blood cell (RBC) amustaline/glutathione(GSH) pathogen reduction, currently undergoing phase III US clinical trials following successful European studies(1-3). Phosphatidylinositol glycan, class A (Pig-a) X-linked gene mutagenesis is a validated mammalian in vivo mutation assay for genotoxicity, assessed as clonal loss of glycosylphosphatidylinositol-linked CD59 cell-surface molecules on reticulocytes (RETs) and RBCs. METHODS Male Sprague-Dawley rats received continuous infusion of S-300 up to the maximum feasible dose (240 mg/kg/day-limited by solubility and volume) for 28 days. Positive controls received a known mutagen by oral gavage on Days 1-3. Plasma levels of S-300 were assessed by HPLC before, during and after infusion. CD59-negative RBCs and RETs were enumerated in pre-dose and Day 28 samples, using a flow cytometric method. Outcome was evaluated by predetermined criteria using concurrent and historical controls. Toxicity was assessed by laboratory measures and necropsy. RESULTS S-300 reached maximum, dose-dependent levels (3-15 μmol/L) within 2-8 h that were sustained for 672 h and undetectable 2 h after infusion. Circulating RET levels indicated a lack of hematopoietic toxicity. Necropsy revealed minimal-mild observations related to poor S-300 solubility at high concentrations. Pig-a assessment met the preset acceptability criteria and revealed no increase in mutant RBCs or RETs. CONCLUSIONS Maximum feasible S-300 exposure of rats by continuous infusion for 28 days was not genotoxic as assessed by an Organization for Economic Cooperation and Development-compliant, mammalian, in vivo Pig-a gene mutation assay that meets the requirements of International Conference on Harmonization (ICH) S2(R1) and FDA guidances on genotoxicity testing.
Collapse
Affiliation(s)
- Anne North
- Independent Consultant, Pleasant Hill, California, USA
| | | | | | | | | | | | | | | | - Nina Mufti
- Cerus Corporation, Concord, California, USA
| |
Collapse
|
2
|
Snyder EL, Sekela ME, Welsby IJ, Toyoda Y, Alsammak M, Sodha NR, Beaver TM, Pelletier JPR, Gorham JD, McNeil JS, Sniecinski RM, Pearl RG, Nuttall GA, Sarode R, Reece TB, Kaplan A, Davenport RD, Ipe TS, Benharash P, Lopez-Plaza I, Gammon RR, Sadler P, Pitman JP, Liu K, Bentow S, Corash L, Mufti N, Varrone J, Benjamin RJ. Evaluation of the efficacy and safety of amustaline/glutathione pathogen-reduced RBCs in complex cardiac surgery: the Red Cell Pathogen Inactivation (ReCePI) study-protocol for a phase 3, randomized, controlled trial. Trials 2023; 24:799. [PMID: 38082326 PMCID: PMC10712151 DOI: 10.1186/s13063-023-07831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Red blood cell (RBC) transfusion is a critical supportive therapy in cardiovascular surgery (CVS). Donor selection and testing have reduced the risk of transfusion-transmitted infections; however, risks remain from bacteria, emerging viruses, pathogens for which testing is not performed and from residual donor leukocytes. Amustaline (S-303)/glutathione (GSH) treatment pathogen reduction technology is designed to inactivate a broad spectrum of infectious agents and leukocytes in RBC concentrates. The ReCePI study is a Phase 3 clinical trial designed to evaluate the efficacy and safety of pathogen-reduced RBCs transfused for acute anemia in CVS compared to conventional RBCs, and to assess the clinical significance of treatment-emergent RBC antibodies. METHODS ReCePI is a prospective, multicenter, randomized, double-blinded, active-controlled, parallel-design, non-inferiority study. Eligible subjects will be randomized up to 7 days before surgery to receive either leukoreduced Test (pathogen reduced) or Control (conventional) RBCs from surgery up to day 7 post-surgery. The primary efficacy endpoint is the proportion of patients transfused with at least one study transfusion with an acute kidney injury (AKI) diagnosis defined as any increased serum creatinine (sCr) level ≥ 0.3 mg/dL (or 26.5 µmol/L) from pre-surgery baseline within 48 ± 4 h of the end of surgery. The primary safety endpoints are the proportion of patients with any treatment-emergent adverse events (TEAEs) related to study RBC transfusion through 28 days, and the proportion of patients with treatment-emergent antibodies with confirmed specificity to pathogen-reduced RBCs through 75 days after the last study transfusion. With ≥ 292 evaluable, transfused patients (> 146 per arm), the study has 80% power to demonstrate non-inferiority, defined as a Test group AKI incidence increase of no more than 50% of the Control group rate, assuming a Control incidence of 30%. DISCUSSION RBCs are transfused to prevent tissue hypoxia caused by surgery-induced bleeding and anemia. AKI is a sensitive indicator of renal hypoxia and a novel endpoint for assessing RBC efficacy. The ReCePI study is intended to demonstrate the non-inferiority of pathogen-reduced RBCs to conventional RBCs in the support of renal tissue oxygenation due to acute anemia and to characterize the incidence of treatment-related antibodies to RBCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James D Gorham
- University of Virginia Health System, Charlottesville, VA, USA
| | - John S McNeil
- University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | - Ravi Sarode
- University of Texas, Southwestern, Dallas, TX, USA
| | | | - Alesia Kaplan
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Vitalant, Pittsburgh, PA, USA
| | | | - Tina S Ipe
- Our Blood Institute, Oklahoma City, OK, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Richard R Gammon
- Scientific, Medical and Technical and Research Department, OneBlood, Orlando, FL, USA
| | | | - John P Pitman
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | - Kathy Liu
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | - Stanley Bentow
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | - Laurence Corash
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | - Nina Mufti
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | - Jeanne Varrone
- Cerus Corporation, 1220 Concord Ave, Concord, CA, 94520, USA
| | | |
Collapse
|
3
|
Chen JJ, Lee TH, Kuo G, Huang YT, Chen PR, Chen SW, Yang HY, Hsu HH, Hsiao CC, Yang CH, Lee CC, Chen YC, Chang CH. Strategies for post-cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960581. [PMID: 36247436 PMCID: PMC9555275 DOI: 10.3389/fcvm.2022.960581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Objects Cardiac surgery is associated with acute kidney injury (AKI). However, the effects of various pharmacological and non-pharmacological strategies for AKI prevention have not been thoroughly investigated, and their effectiveness in preventing AKI-related adverse outcomes has not been systematically evaluated. Methods Studies from PubMed, Embase, and Medline and registered trials from published through December 2021 that evaluated strategies for preventing post-cardiac surgery AKI were identified. The effectiveness of these strategies was assessed through a network meta-analysis (NMA). The secondary outcomes were prevention of dialysis-requiring AKI, mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. The interventions were ranked using the P-score method. Confidence in the results of the NMA was assessed using the Confidence in NMA (CINeMA) framework. Results A total of 161 trials (involving 46,619 participants) and 53 strategies were identified. Eight pharmacological strategies {natriuretic peptides [odds ratio (OR): 0.30, 95% confidence interval (CI): 0.19-0.47], nitroprusside [OR: 0.29, 95% CI: 0.12-0.68], fenoldopam [OR: 0.36, 95% CI: 0.17-0.76], tolvaptan [OR: 0.35, 95% CI: 0.14-0.90], N-acetyl cysteine with carvedilol [OR: 0.37, 95% CI: 0.16-0.85], dexmedetomidine [OR: 0.49, 95% CI: 0.32-0.76;], levosimendan [OR: 0.56, 95% CI: 0.37-0.84], and erythropoietin [OR: 0.62, 95% CI: 0.41-0.94]} and one non-pharmacological intervention (remote ischemic preconditioning, OR: 0.76, 95% CI: 0.63-0.92) were associated with a lower incidence of post-cardiac surgery AKI with moderate to low confidence. Among these nine strategies, five (fenoldopam, erythropoietin, natriuretic peptides, levosimendan, and remote ischemic preconditioning) were associated with a shorter ICU LOS, and two (natriuretic peptides [OR: 0.30, 95% CI: 0.15-0.60] and levosimendan [OR: 0.68, 95% CI: 0.49-0.95]) were associated with a lower incidence of dialysis-requiring AKI. Natriuretic peptides were also associated with a lower risk of mortality (OR: 0.50, 95% CI: 0.29-0.86). The results of a sensitivity analysis support the robustness and effectiveness of natriuretic peptides and dexmedetomidine. Conclusion Nine potentially effective strategies were identified. Natriuretic peptide therapy was the most effective pharmacological strategy, and remote ischemic preconditioning was the only effective non-pharmacological strategy. Preventive strategies might also help prevent AKI-related adverse outcomes. Additional studies are required to explore the optimal dosages and protocols for potentially effective AKI prevention strategies.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rung Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- Department of Nephrology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
4
|
Stramer SL, Lanteri MC, Brodsky JP, Foster GA, Krysztof DE, Groves JA, Townsend RL, Notari E, Bakkour S, Stone M, Simmons G, Spencer B, Tonnetti L, Busch MP. Mitigating the risk of transfusion-transmitted infections with vector-borne agents solely by means of pathogen reduction. Transfusion 2022; 62:1388-1398. [PMID: 35726756 PMCID: PMC9541364 DOI: 10.1111/trf.16950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
Abstract
Background This study evaluated whether pathogen reduction technology (PRT) in plasma and platelets using amotosalen/ultraviolet A light (A/UVA) or in red blood cells using amustaline/glutathione (S‐303/GSH) may be used as the sole mitigation strategy preventing transfusion‐transmitted West Nile (WNV), dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viral, and Babesia microti, Trypanosoma cruzi, and Plasmodium parasitic infections. Methods Antibody (Ab) status and pathogen loads (copies/mL) were obtained for donations from US blood donors testing nucleic acid (NAT)‐positive for WNV, DENV, ZIKV, CHIKV, and B. microti. Infectivity titers derived from pathogen loads were compared to published PRT log10 reduction factors (LRF); LRFs were also reviewed for Plasmodium and T. cruzi. The potential positive impact on donor retention following removal of deferrals from required questioning and testing for WNV, Babesia, Plasmodium, and T. cruzi was estimated for American Red Cross (ARC) donors. Results A/UVA and S‐303/GSH reduced infectivity to levels in accordance with those recognized by FDA as suitable to replace testing for all agents evaluated. If PRT replaced deferrals resulting from health history questions and/or NAT for WNV, Babesia, Plasmodium, and T. cruzi, 27,758 ARC donors could be retained allowing approximately 50,000 additional donations/year based on 1.79 donations/donor for calendar year 2019 (extrapolated to an estimated 125,000 additional donations nationally). Conclusion Pathogen loads in donations from US blood donors demonstrated that robust PRT may provide an opportunity to replace deferrals associated with donor questioning and NAT for vector‐borne agents allowing for significant donor retention and likely increased blood availability.
Collapse
Affiliation(s)
- Susan L Stramer
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | | | | | - Gregory A Foster
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | - David E Krysztof
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | - Jamel A Groves
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | | | - Edward Notari
- American Red Cross, Scientific Affairs, Rockville, Maryland, USA
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, California, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, USA
| | - Bryan Spencer
- American Red Cross, Scientific Affairs, Dedham, Massachusetts, USA
| | - Laura Tonnetti
- American Red Cross, Scientific Affairs, Rockville, Maryland, USA
| | | |
Collapse
|
5
|
Sow C, Bouissou A, Girard YA, Singh GB, Bounaadja L, Payrat JM, Haas D, Isola H, Lanteri MC, Bringmann P, Grellier P. Robust inactivation of Plasmodium falciparum in red blood cell concentrates using amustaline and glutathione pathogen reduction. Transfusion 2022; 62:1073-1083. [PMID: 35385146 PMCID: PMC9325390 DOI: 10.1111/trf.16867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Plasmodium falciparum is the parasite responsible for most malaria cases globally. The risk of transfusion-transmitted malaria (TTM) is mitigated by donor deferrals and blood screening strategies, which adversely impact blood availability. Previous studies showed robust inactivation of P. falciparum using nucleic acid-targeting pathogen reduction technologies (PRT) for the treatment of plasma and platelet components or whole blood (WB). The efficacy of the amustaline-glutathione (GSH) PRT to inactivate P. falciparum is here evaluated in red blood cells (RBC), as well the impact of PRT on parasite loads, stages, and strains. STUDY DESIGN AND METHODS RBC units resuspended in AS-1 or AS-5 additive solutions were spiked with ring stage-infected RBC and treated with the amustaline-GSH PRT. Parasite loads and viability were measured in samples at the time of contamination, and after treatment, using serial 10-fold dilutions of the samples in RBC cultures maintained for up to 4 weeks. RESULTS P. falciparum viability assays allow for the detection of very low levels of parasite. Initial parasite titer was >5.2 log10 /ml in AS-1/5 RBC. No infectious parasites were detected in amustaline-GSH-treated samples after 4 weeks of culture. Amustaline-GSH inactivated high parasite loads regardless of parasite stages and strains. Amustaline readily penetrates the parasite, irreversibly blocks development, and leads to parasite death and expulsion from RBC. DISCUSSION Amustaline-GSH PRT demonstrated robust efficacy to inactivate malaria parasites in RBC concentrates. This study completes the portfolio of studies demonstrating the efficacy of nucleic acid-targeting PRTs to mitigate TTM risks as previously reported for platelet concentrates, plasma, and WB.
Collapse
Affiliation(s)
- Cissé Sow
- UMR7245 MCAM, Muséum National d'Histoire Naturelle, Team PPL, CNRS, Paris, France
| | - Amélie Bouissou
- UMR7245 MCAM, Muséum National d'Histoire Naturelle, Team PPL, CNRS, Paris, France
| | | | | | - Lotfi Bounaadja
- UMR7245 MCAM, Muséum National d'Histoire Naturelle, Team PPL, CNRS, Paris, France
| | | | | | | | | | | | - Philippe Grellier
- UMR7245 MCAM, Muséum National d'Histoire Naturelle, Team PPL, CNRS, Paris, France
| |
Collapse
|
6
|
Li M, Irsch J, Corash L, Benjamin RJ. Is pathogen reduction an acceptable alternative to irradiation for risk mitigation of transfusion-associated graft versus host disease? Transfus Apher Sci 2022; 61:103404. [DOI: 10.1016/j.transci.2022.103404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Foukaneli T, Kerr P, Bolton‐Maggs PH, Cardigan R, Coles A, Gennery A, Jane D, Kumararatne D, Manson A, New HV, Torpey N. Guidelines on the use of irradiated blood components. Br J Haematol 2020; 191:704-724. [DOI: 10.1111/bjh.17015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Theodora Foukaneli
- NHS Blood and Transplant Cambridge Cambridge UK
- Department of Haematology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Paul Kerr
- Department of Haematology Royal Devon & Exeter NHS Foundation Trust Exeter UK
| | - Paula H.B. Bolton‐Maggs
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
- Serious Hazards of Transfusion Office Manchester Blood Centre Manchester UK
| | - Rebecca Cardigan
- Haematology University of Cambridge Cambridge Biomedical Campus Cambridge UK
| | - Alasdair Coles
- Clinical Neuroscience University of Cambridge Cambridge Biomedical Campus Cambridge UK
| | - Andrew Gennery
- Department of Paediatric Immunology Institute of Cellular Medicine Newcastle University Cambridge Newcastle upon Tyne UK
| | - David Jane
- Department of Medicine University of Cambridge Cambridge Biomedical Campus Cambridge Cambridge UK
| | - Dinakantha Kumararatne
- Department of Clinical Immunology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Ania Manson
- Department of Clinical Immunology Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Helen V. New
- NHS Blood and Transplant London UK
- Department of Haematology Imperial College London London UK
| | - Nicholas Torpey
- Department of Clinical Nephrology and Transplantation Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | | |
Collapse
|
8
|
Geisen C, North A, Becker L, Brixner V, von Goetz M, Corash L, Benjamin RJ, Mufti N, Seifried E. Prevalence of natural and acquired antibodies to amustaline/glutathione pathogen reduced red blood cells. Transfusion 2020; 60:2389-2398. [PMID: 32692456 DOI: 10.1111/trf.15965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND The INTERCEPT™ Blood System for Red Blood Cells (RBCs) utilizes amustaline (S-303) and glutathione (GSH) to inactivate pathogens and leukocytes in transfused RBCs. Treatment-emergent low titer non-hemolytic antibodies to amustaline/GSH RBC were detected in clinical trials using a prior version of the process. The amustaline/GSH process was re-formulated to decrease S-303 RBC adduct formation. STUDY DESIGN AND METHODS A standard three-cell antibody screening panel was modified to include reagent red cells (RRC) with high (S-303H) or low (S-303L) S-303 adduct density as assessed by flow cytometry, representative of the original and current amustaline/GSH treatment processes, respectively. General hospital and RBC transfusion-dependent patients never exposed, and clinical trial subjects exposed to amustaline/GSH RBC were screened for antibodies to amustaline/GSH RBC using a standardized agglutination assay. RESULTS Twelve (0.1%) of 10,721 general hospital and 5 (0.5%) of 998 repeatedly-transfused patients not previously exposed to amustaline/GSH RBCs expressed natural, low titer (2-32) IgM and/or IgG (non-IgG1 or IgG3 isotype) antibodies with acridine (a structural element of amustaline) (n = 14) or non-acridine (n = 3) specificity. 11 of 17 sera reacted with S-303L panel RRCs. In clinical studies 81 thalassemia and 25 cardiac surgery patients were transfused with a total of 1085 amustaline/GSH RBCs and no natural or treatment-emergent S-303 antibodies were detected. CONCLUSION Standardized RRC screening panels are sensitive for the detection of natural and acquired S-303-specific antibodies. Natural low titer antibodies to amustaline/GSH RBC are present in 0.15% of naïve patients. The clinical relevance of these antibodies appears minimal but is under further investigation.
Collapse
Affiliation(s)
- Christof Geisen
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | - Anne North
- Cerus Corporation, Concord, California, USA
| | - Lisa Becker
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | - Veronika Brixner
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| | | | | | | | - Nina Mufti
- Cerus Corporation, Concord, California, USA
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
| |
Collapse
|
9
|
New strategies for the control of infectious and parasitic diseases in blood donors: the impact of pathogen inactivation methods. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Around 70 infectious agents are possible threats for blood safety.
The risk for blood recipients is increasing because of new emergent agents like West Nile, Zika and Chikungunya viruses, or parasites such as Plasmodium and Trypanosoma cruzi in non-endemic regions, for instance.
Screening programmes of the donors are more and more implemented in several Countries, but these cannot prevent completely infections, especially when they are caused by new agents.
Pathogen inactivation (PI) methods might overcome the limits of the screening and different technologies have been set up in the last years.
This review aims to describe the most widely used methods focusing on their efficacy as well as on the preservation integrity of blood components.
Collapse
|
10
|
Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
|
11
|
|
12
|
Atreya C, Glynn S, Busch M, Kleinman S, Snyder E, Rutter S, AuBuchon J, Flegel W, Reeve D, Devine D, Cohn C, Custer B, Goodrich R, Benjamin RJ, Razatos A, Cancelas J, Wagner S, Maclean M, Gelderman M, Cap A, Ness P. Proceedings of the Food and Drug Administration public workshop on pathogen reduction technologies for blood safety 2018 (Commentary, p. 3026). Transfusion 2019; 59:3002-3025. [PMID: 31144334 PMCID: PMC6726584 DOI: 10.1111/trf.15344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chintamani Atreya
- US Food and Drug Administration, Center for Biologics Evaluation and ResearchOffice of Blood Research and ReviewSilver SpringMaryland
| | - Simone Glynn
- National Heart Lung and Blood InstituteBethesdaMarylandUSA
| | | | | | - Edward Snyder
- Blood BankYale‐New Haven HospitalNew HavenConnecticut
| | - Sara Rutter
- Department of Pathology and Laboratory MedicineYale School of MedicineNew HavenConnecticut
| | - James AuBuchon
- Department of PathologyDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
| | - Willy Flegel
- Department of Transfusion MedicineNIH Clinical CenterBethesdaMaryland
| | - David Reeve
- Blood ComponentsAmerican Red CrossRockvilleMaryland
| | - Dana Devine
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Claudia Cohn
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Brian Custer
- Vitalant Research InstituteSan FranciscoCalifornia
| | - Raymond Goodrich
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColorado
| | | | | | - Jose Cancelas
- Hoxworth Blood CenterUniversity of Cincinnati HealthCincinnatiOhio
| | | | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowScotland
| | - Monique Gelderman
- Department of HematologyCenter for Biologics Evaluation and Research, US Food and Drug AdministrationSilver SpringMaryland
| | - Andrew Cap
- U.S. Army Institute of Surgical ResearchSan AntonioTexas
| | - Paul Ness
- Blood BankJohns Hopkins HospitalBaltimoreMaryland
| |
Collapse
|
13
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
14
|
Rebulla P. The long and winding road to pathogen reduction of platelets, red blood cells and whole blood. Br J Haematol 2019; 186:655-667. [PMID: 31304588 DOI: 10.1111/bjh.16093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Pathogen reduction technologies (PRTs) have been developed to further reduce the current very low risks of acquiring transfusion-transmitted infections and promptly respond to emerging infectious threats. An entire portfolio of PRTs suitable for all blood components is not available, but the field is steadily progressing. While PRTs for plasma have been used for many years, PRTs for platelets, red blood cells (RBC) and whole blood (WB) were developed more slowly, due to difficulties in preserving cell functions during storage. Two commercial platelet PRTs use ultra violet (UV) A and UVB light in the presence of amotosalen or riboflavin to inactivate pathogens' nucleic acids, while a third experimental PRT uses UVC light only. Two PRTs for WB and RBC have been tested in experimental clinical trials with storage limited to 21 or 35 days, due to unacceptably high RBC storage lesion beyond these time limits. This review summarizes pre-clinical investigations and selected outcomes from clinical trials using the above PRTs. Further studies are warranted to decrease cell storage lesions after PRT treatment and to test PRTs in different medical and surgical conditions. Affordability remains a major administrative obstacle to PRT use, particularly so in geographical regions with higher risks of transfusion-transmissible infections.
Collapse
Affiliation(s)
- Paolo Rebulla
- Department of Transfusion Medicine and Haematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Jacquot C, Mo YD, Luban NLC. New Approaches and Trials in Pediatric Transfusion Medicine. Hematol Oncol Clin North Am 2019; 33:507-520. [PMID: 31030816 DOI: 10.1016/j.hoc.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood transfusions are frequently lifesaving, but there is growing awareness of their associated infectious and noninfectious adverse events. Patient blood management advocates for judicious use of transfusions and considerations of alternatives to correct anemia or achieve hemostasis. Several transfusion practices, either already implemented or under investigation, aim to further improve the safety of transfusions. An enduring challenge in pediatric and neonatal transfusion practice is that studies typically focus on adults, and findings are extrapolated to younger patients. This article aims to summarize some of the newer developments in transfusion medicine with a focus on the neonatal and pediatric population.
Collapse
Affiliation(s)
- Cyril Jacquot
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Yunchuan Delores Mo
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Naomi L C Luban
- Division of Laboratory Medicine, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Division of Hematology, Center for Cancer and Blood Disorders, Children's National Health System, Sheikh Zayed Campus for Advanced Children's Medicine, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
16
|
Aydinok Y, Piga A, Origa R, Mufti N, Erickson A, North A, Waldhaus K, Ernst C, Lin JS, Huang N, Benjamin RJ, Corash L. Amustaline-glutathione pathogen-reduced red blood cell concentrates for transfusion-dependent thalassaemia. Br J Haematol 2019; 186:625-636. [PMID: 31148155 PMCID: PMC6771954 DOI: 10.1111/bjh.15963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 01/19/2023]
Abstract
Transfusion‐dependent thalassaemia (TDT) requires red blood cell concentrates (RBCC) to prevent complications of anaemia, but carries risk of infection. Pathogen reduction of RBCC offers potential to reduce infectious risk. We evaluated the efficacy and safety of pathogen‐reduced (PR) Amustaline‐Glutathione (A‐GSH) RBCC for TDT. Patients were randomized to a blinded 2‐period crossover treatment sequence for six transfusions over 8–10 months with Control and A‐GSH‐RBCC. The efficacy outcome utilized non‐inferiority analysis with 90% power to detect a 15% difference in transfused haemoglobin (Hb), and the safety outcome was the incidence of antibodies to A‐GSH‐PR‐RBCC. By intent to treat (80 patients), 12·5 ± 1·9 RBCC were transfused in each period. Storage durations of A‐GSH and C‐RBCC were similar (8·9 days). Mean A‐GSH‐RBCC transfused Hb (g/kg/day) was not inferior to Control (0·113 ± 0·04 vs. 0·111 ± 0·04, P = 0·373, paired t‐test). The upper bound of the one‐sided 95% confidence interval for the treatment difference from the mixed effects model was 0·005 g/kg/day, within a non‐inferiority margin of 0·017 g/kg/day. A‐GSH‐RBCC mean pre‐transfusion Hb levels declined by 6·0 g/l. No antibodies to A‐GSH‐RBCC were detected, and there were no differences in adverse events. A‐GSH‐RBCCs offer potential to reduce infectious risk in TDT with a tolerable safety profile.
Collapse
Affiliation(s)
- Yesim Aydinok
- Department of Paediatric Haematology and Oncology, Ege University Hospital, Izmir, Turkey
| | - Antonio Piga
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Raffaella Origa
- Ospedale Pediatrico Microcitemico, Universita di Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kleinman S, Stassinopoulos A. Transfusion-associated graft-versus-host disease reexamined: potential for improved prevention using a universally applied intervention. Transfusion 2018; 58:2545-2563. [DOI: 10.1111/trf.14930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Steven Kleinman
- Clinical Pathology; University of British Columbia, School of Medicine; Vancouver British Columbia Canada
| | | |
Collapse
|
18
|
Budget impact of implementing platelet pathogen reduction into the Italian blood transfusion system. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 16:483-489. [PMID: 30201081 DOI: 10.2450/2018.0115-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Despite improvements in blood donor selection and screening procedures, transfusion recipients can still develop complications related to infections by known and emerging pathogens. Pathogen reduction technologies (PRT) have been developed to reduce such risks. The present study, developed whithin a wider health technology assessment (HTA) process, was undertaken to estimate the costs of the continuing increase in the use of platelet PRT in Italy. MATERIALS AND METHODS A multidisciplinary team was established to perform the HTA and conduct a budget impact analysis. Quantitative data on platelet use were derived from the 2015 national blood transfusion report and from the Italian Platelets Transfusion Assessment Study (IPTAS). The current national fee of 60 Euro per platelet PRT procedure was used to quantify the costs to the Italian National Health Service (INHS). The analysis adopts a 3-year time-frame. In order to identify the impact on budget we compared a scenario representing an increased use of PRT platelets over time with a control scenario in which standard platelets are used. RESULTS Progressive implementation of PRT for 20%, 40% and 66% of annual adult platelet doses could generate an increase in annual costs for the INHS amounting to approximately 7, 14 and 23 million Euros, respectively. Use of kits and devices suitable for the treatment of multiple adult platelet doses in one PRT procedure could lower costs. DISCUSSION In order to fully evaluate the societal perspective of implementing platelet PRT, the increase in costs must be balanced against the expected benefits (prevention of transfusion-transmissible infections, white cell inactivation, extension of platelet storage, discontinuation of pathogen detection testing). Further studies based on actual numbers of platelet transfusion complications and their societal cost at a local level are needed to see the full cost to benefit ratio of platelet PRT implementation in Italy, and to promote equal treatment for all citizens.
Collapse
|