1
|
Li Y, Xu L, Hao C, Yang S, Wang J, Chen J. ARTS is essential for di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115882. [PMID: 38171099 DOI: 10.1016/j.ecoenv.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
As an extensively employed plasticizer in industrial applications, di-2-ethylhexyl phthalate (DEHP) can induce apoptosis of mouse Leydig cells, yet the precise mechanism remains elusive. In the current study, we identified that DEHP could specially induced apoptosis in the Leydig cells of the testis tissue, accompanied with the upregulation of apoptosis-related protein in the TGF-β signaling pathway (ARTS) in the cells. Overexpression of ARTS significantly induced apoptosis of TM3 cells, while knockdown of ARTS inhibited apoptosis. Furthermore, DEHP-induced apoptosis of TM3 cells could be alleviated by knockdown of ARTS, which indicated that ARTS was involved in DEHP-induced apoptosis of mouse Leydig cells. Bioinformation assay predicts that there are four potential p53-responsive elements (p53-REs) located at - 6060, - 5726, - 5631 and - 5554 before the transcription start site of ARTS gene, implying that gene transcription of ARTS could be regulated by p53. Interestingly, DEHP was shown to specifically upregulate the expression of p53 in the Leydig cells of the testis tissue and TM3 cells. Consistently, p53 was proved to bind to the RE4 site of the ARTS gene promoter and transcriptionally activated the promoter-driven expression of the luciferase reporter gene. Overexpression of p53 could induce apoptosis of TM3 cells; while knockdown of p53 could not only rescue DEHP-induced apoptosis of the cells, but also inhibit DEHP-caused upregulation of ARTS. Meanwhile, we showed that oxidative stress could induce apoptosis of TM3 cells, accompanied with the increased protein levels of p53 and ARTS; while inhibition of oxidative stress dramatically alleviated DEHP-induced apoptosis and the up-regulation of p53 and ARTS. Taken together, these results indicated that DEHP-induced oxidative stress activates the p53-ARTS cascade to promote apoptosis of mouse Leydig cells.
Collapse
Affiliation(s)
- Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Larsson L, Sandgren P, Ohlsson S, Derving J, Friis-Christensen T, Daggert F, Frizi N, Reichenberg S, Chatellier S, Diedrich B, Antovic J, Larsson S, Uhlin M. Non-phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sang 2020; 116:60-70. [PMID: 32918773 DOI: 10.1111/vox.12982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Commercial blood bags are predominantly made of polyvinyl chloride (PVC) plasticized with di(2-ethylhexyl) phthalate (DEHP). DEHP is favourable for storage of red blood cells (RBC). Historically, removal of DEHP from blood bags has been linked to unacceptable haemolysis levels. Oncoming regulatory restrictions for DEHP due to toxicity concerns increase the urgency to replace DEHP without compromising RBC quality. Di(2-ethylhexyl) terephthalate (DEHT) is one suggested substitute. The aim of this study was to compare PVC-DEHT to PVC-DEHP blood bags using additive solutions saline-adenine-glucose-mannitol (SAGM) and phosphate-adenine-glucose-guanosine-saline-mannitol (PAGGSM), to determine whether DEHT can maintain acceptable component quality. MATERIALS AND METHODS RBC concentrates (N = 64), platelet concentrates (N = 16) and fresh frozen plasma (N = 32) were produced from whole blood collected into either DEHT or DEHP plasticized systems. Using a pool-and-split study design, pairs of identical RBC content were created within each plasticizer arm and assigned either SAGM or PAGGSM. Storage effects were assessed weekly for 49 days (RBC), 7 days (platelets) and before/after freezing (plasma). RESULTS Though haemolysis was slightly higher in DEHT, all study arms remained below half of the European limit 0·8%. K+ was lower in DEHT than in DEHP independent of additive solution. The metabolic parameters were not influenced by choice of plasticizer. Platelet activation/metabolism and plasma content were similarly preserved. CONCLUSION Our study demonstrates that the plasticizer DEHT provides adequate blood component quality. We propose DEHT as a strong future candidate for replacement of DEHP in blood bags.
Collapse
Affiliation(s)
- Linda Larsson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Per Sandgren
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ohlsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Derving
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Beatrice Diedrich
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jovan Antovic
- Department of Coagulation Research, Institute for Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Stella Larsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Kaestner F, Seiler F, Rapp D, Eckert E, Müller J, Metz C, Bals R, Drexler H, Lepper PM, Göen T. Exposure of patients to di(2-ethylhexy)phthalate (DEHP) and its metabolite MEHP during extracorporeal membrane oxygenation (ECMO) therapy. PLoS One 2020; 15:e0224931. [PMID: 31999712 PMCID: PMC6992201 DOI: 10.1371/journal.pone.0224931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/24/2019] [Indexed: 01/13/2023] Open
Abstract
The plasticizer di(2-ethylhexyl)phthalate (DEHP) is often used for PVC medical devices, that are also largely used for intensive care medical treatments, like extracorporeal membrane oxygenation (ECMO) therapy. Due to the toxicological potential of DEHP, the inner exposure of patients with this plasticizer is a strong matter of concern as many studies have shown a high leaching potential of DEHP into blood. In this study, the inner DEHP exposure of patients undergoing ECMO treatment was investigated. The determined DEHP blood levels of ECMO patients and the patients of the control group ranged from 31.5 to 1009 μg/L (median 156.0 μg/L) and from 19.4 to 75.3 μg/L (median 36.4 μg/L), respectively. MEHP blood levels were determined to range from < LOD to 475 μg/L (median 15.9 μg/L) in ECMO patients and from < LOD to 9.9 μg/L (median 3.7 μg/L) in the control group patients, respectively. Increased DEHP exposure was associated with the number of cannulas and membranes of the ECMO setting, whereas residual diuresis decreased the exposure. Due to the suspected toxicological potential of DEHP, its use in medical devices should be further investigated, in particular for ICU patients with long-term exposure to PVC, like in ECMO therapy.
Collapse
Affiliation(s)
- Franziska Kaestner
- Department of Internal Medicine V, University Hospital of Saarland, Homburg, Germany
| | - Frederik Seiler
- Department of Internal Medicine V, University Hospital of Saarland, Homburg, Germany
| | - Daniel Rapp
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg/Saar, Germany
| | - Elisabeth Eckert
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Müller
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carlos Metz
- Department of Internal Medicine V, University Hospital of Saarland, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V, University Hospital of Saarland, Homburg, Germany
| | - Hans Drexler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp M. Lepper
- Department of Internal Medicine V, University Hospital of Saarland, Homburg, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Descat A, Lecoeur M, Kouach M, Goossens L, Thelliez A, Odou P, Decaudin B, Goossens JF. Simultaneous determination of di(2-ethylhexyl) phthalate and diisononylcyclohexane-1,2-dicarboxylate and their monoester metabolites in four labile blood products by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2019; 181:113063. [PMID: 31927338 DOI: 10.1016/j.jpba.2019.113063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that is largely used for PVC blood bags. The migration of DEHP from medical devices into labile blood products (LBP) is a well-known situation. While DEHP has beneficial effects on the storage of red blood cells, it can have toxicological impact due to its potential reprotoxic effects (classified group 1B). Since July 1st, 2015, the French law prohibits the use of tubing made in DEHP-plasticized PVC in paediatric, neonatal and maternity wards. This provision, which could extend in several years more widely to medical devices used for drugs infusion, dialysis, feeding and blood bags, has led manufacturers to replace DEHP to alternative plasticizers such as diisononylcyclohexane-1,2-dicarboxylate (DINCH). In this paper, a liquid chromatography-tandem mass spectrometry (LCMS/MS) method has been developed and validated for the determination of DEHP, DINCH and their corresponding monoester metabolites (MEHP and MINCH) in four labile blood products (LBP): whole blood (WB), red cells concentrate (RCC), plasma and platelet concentrate (PC). Due to strong contamination of blank LBP by DEHP because of its ubiquitous presence in working environment and despite the attention paid to avoid contamination of solvents and glassware, a trap chromatographic column was implemented between the solvent mixing chamber and the injector of the LC system. This set-up permitted to discriminate DEHP present in the sample to DEHP brought by the environmental contamination. In the optimized conditions, all compounds were separated in less than 10 min. The analytes were extracted from LBP samples using a liquid-liquid extraction. After optimization, recoveries were ranged from 47 to 96 %, depending on the analytes and the nature of LBP. Except for DEHP which exhibited RSD values of intermediate precision higher than 20 % at a concentration of 25 nM, all the precision results (repeatability and intermediate precision) were lower than 16 % and trueness values ranged from -16.2-19.8%. Using the validated method, the leachability of DEHP and DINCH from corresponding PVC-blood bags was investigated and the concentrations of their corresponding metabolites, MEHP and MINCH, were determined in whole blood, red cells concentrate, plasma and platelet concentrate.
Collapse
Affiliation(s)
- Amandine Descat
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France; Univ Lille, Plateau de spectrométrie de masse - ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France
| | - Marie Lecoeur
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France.
| | - Mostafa Kouach
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France; Univ Lille, Plateau de spectrométrie de masse - ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France
| | - Laurence Goossens
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France
| | - Aurélie Thelliez
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France
| | - Pascal Odou
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France; Department of Pharmacy, University Hospital, F-59000, Lille, France
| | - Bertrand Decaudin
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France; Department of Pharmacy, University Hospital, F-59000, Lille, France
| | - Jean-François Goossens
- Univ Lille, ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France; Univ Lille, Plateau de spectrométrie de masse - ULR 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000, Lille, France
| |
Collapse
|