1
|
Alshalani A, de Wissel MB, Tuip-de Boer AM, Roelofs JJTH, van Bruggen R, Acker JP, Juffermans NP. Transfusion of female blood in a rat model is associated with red blood cells entrapment in organs. PLoS One 2023; 18:e0288308. [PMID: 37992035 PMCID: PMC10664878 DOI: 10.1371/journal.pone.0288308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/25/2023] [Indexed: 11/24/2023] Open
Abstract
Transfusion of red blood cells (RBCs) has been associated with adverse outcomes. Mechanisms may be related to donor sex and biological age of RBC. This study hypothesized that receipt of female blood is associated with decreased post-transfusion recovery (PTR) and a concomitant increased organ entrapment in rats, related to young age of donor RBCs. Donor rats underwent bloodletting to stimulate production of new, young RBCs, followed by Percoll fractionation for further enrichment of young RBCs based on their low density. Control donors did not undergo these procedures. Male rats received either a (biotinylated) standard RBC product or a product enriched for young RBCs, derived from either male or female donors. Controls received saline. Organs and blood samples were harvested after 24 hours. This study found no difference in PTR between groups, although only the group receiving young RBCs from females failed to reach a PTR of 75%. Receipt of both standard RBCs and young RBCs from females was associated with increased entrapment of donor RBCs in the lung, liver, and spleen compared to receiving blood from male donors. Soluble ICAM-1 and markers of hemolysis were higher in recipients of female blood compared to control. In conclusion, transfusing RBCs from female donors, but not from male donors, is associated with trapping of donor RBCs in organs, accompanied by endothelial activation and hemolysis.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marit B. de Wissel
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita M. Tuip-de Boer
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Riley BC, Stansbury LG, Hasan RA, Hess JR. Transfusion of red blood cells ≥35 days old: A narrative review of clinical outcomes. Transfusion 2023; 63:2179-2187. [PMID: 37681276 DOI: 10.1111/trf.17536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Brian C Riley
- University of Washington School of Medicine, Seattle, Washington, USA
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
| | - Lynn G Stansbury
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Anesthesia and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rida A Hasan
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John R Hess
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Gupta V, Patidar GK, Hote M, Mehar R, Dhiman Y, Hazarika A. Association of blood donor's biological characteristics on outcomes of cardiac surgery patients receiving red blood cells transfusion. Transfus Clin Biol 2023; 30:130-136. [PMID: 36191899 DOI: 10.1016/j.tracli.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study aimed to assess the association of blood donor variables on the outcome of patients undergoing cardiac surgery. STUDY DESIGN AND METHODS A retrospective observational study was conducted on patients who had cardiac surgery between January 2018 and December 2020. Blood donor characteristics such as age (≤ or >30 years), sex, and body mass index (BMI) (≤ or >25 kg/m2) were analyzed for association with patient outcomes (length of hospital stay (LOS), mortality, and readmission). Sex matching was done as fully match, fully mismatch, and partial mismatch. Cox regression and Linear regression models were used to study the association with mortality and readmission, and LOS. RESULTS During the study period, 5788 patients had cardiac surgery; receiving a total of 20,348 red cell units. Of which, 522 (9%) died, 531 (9.2%) re-admitted and median LOS was 11 days (IQR 7-18). BMI >25 kg/m2 (β, 2.96; p = 0.000), female to male transfusion (partial mismatch: β, 4.42; p = 0.001; fully mismatch: β, 9.0; p = 0.02) negatively affected LOS. BMI >25 kg/m2 (HR, 2.07; p = 0.00) and partial mismatch transfusion to male patients (HR, 1.60; p = 0.01) increased mortality. Fully mismatch transfusion to female patients (HR, 1.24; p = 0.01) and partial mismatch to male patients (HR, 1.86; p = 0.01) increased readmission. No association of donor age on patient outcome was observed. DISCUSSION Blood donor sex, and BMI can influence mortality and LOS in cardiac surgery patients. The use of computer tools to match the patient's and donor's characteristics can assist to eliminate these types of adverse consequences.
Collapse
Affiliation(s)
- Vidushi Gupta
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopal K Patidar
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Milind Hote
- Department of Cardiovascular and Thoracic Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Radheshyam Mehar
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Yashaswi Dhiman
- Department of Immunohematology & Blood Transfusion, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, Jollygrant, Uttarakhand, India
| | - Anjali Hazarika
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India; CMO (SAG), Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Is donor-recipient sex associated with transfusion-related outcomes in critically ill patients? Blood Adv 2022; 6:6076-6077. [PMID: 36103149 PMCID: PMC9720514 DOI: 10.1182/bloodadvances.2022008432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
|
5
|
Garraud O, Chiaroni J. An overview of red blood cell and platelet alloimmunisation in transfusion. Transfus Clin Biol 2022; 29:297-306. [PMID: 35970488 DOI: 10.1016/j.tracli.2022.08.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Post-transfusion alloimmunisation is the main complication of all those observed after one or more transfusion episodes. Alloimmunisation is observed after the transfusion of red blood cell concentrates but also of platelet concentrates. Besides alloimmunisation due to antigens carried almost exclusively by red blood cells such as those of the Rhesus-Kell system, alloimmunisation often raises against HLA antigens; the main responsibility for that, apart from platelet transfusions, lies with residual leukocytes in the products transfused, hence the central importance of effective leukoreduction right from the blood product preparation stage. Alloimmunization is not restricted to transfusion, but it is also observed during pregnancies, carrying out microtransfusions of blood from the fetus immunizing the mother through the placenta (in a retrograde way). Preexisting maternal-fetal immunization can complicate a transfusion program and intensify the creation of alloantibodies in several blood and tissue group systems. The occurrence of autoantibodies, created by several pathogenic reasons, can also interfere with the propensity of certain recipients of blood components to produce alloantibodies. The genetic condition of individuals is in fact strongly linked to the ability or not to recognize antigenic variants foreign to their own biological program and mount an alloimmune response. Some hemoglobin diseases, in carriers of which transfusions can be iterative and lifelong, are complicated by frequent alloimmunizations and amplification of the complications of these alloimmunizations, imposing even stricter transfusion rules. This review details the mechanisms favoring the occurrence of alloimmunization and the immunological principles for the production of molecular and cellular tools for alloimmunization. It concludes with the main preventive measures available to limit the occurrence of these frequent complications of varying severity but sometimes severe.
Collapse
Affiliation(s)
- Olivier Garraud
- Sainbiose-Inserm_U1059, Faculty of Medicine, University of Saint-Etienne, Saint-Etienne, France.
| | - Jacques Chiaroni
- Etablissement Français du Sang Provence-Alpes-Côte d'Azur-Corse, 13005 Marseille, France; Biologie des Groupes Sanguins, EFS, CNRS, ADES, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
6
|
Alshalani A, van Manen L, Boshuizen M, van Bruggen R, Acker JP, Juffermans NP. The Effect of Sex-Mismatched Red Blood Cell Transfusion on Endothelial Cell Activation in Critically Ill Patients. Transfus Med Hemother 2022; 49:98-105. [PMID: 35611381 PMCID: PMC9082204 DOI: 10.1159/000520651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/30/2021] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Observational studies suggest that sex-mismatched transfusion is associated with increased mortality. Mechanisms driving mortality are not known but may include endothelial activation. The aim of this study is to investigate the effects of sex-mismatched red blood cell (RBC) transfusions on endothelial cell activation markers in critically ill patients. STUDY DESIGN AND METHODS In patients admitted to the intensive care unit who received a single RBC unit, blood samples were drawn before (T0), 1 h after (T1), and 24 h after transfusion (T24) for analysis of soluble syndecan-1, soluble intercellular adhesion molecule-1, soluble thrombomodulin (sTM), von Willebrand factor antigen, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNFα). Changes in the levels of these factors were compared between sex-matched and sex-mismatched groups. RESULTS Of 69 included patients, 32 patients were in the sex-matched and 37 patients were in the sex-mismatched group. Compared to baseline, sex-matched transfusion was associated with significant reduction in sTM level (p value = 0.03). Between-group comparison showed that levels of syndecan-1 and sTM were significantly higher in the sex-mismatched group compared to the sex-matched group at T24 (p value = 0.04 and 0.01, respectively). Also, TNFα and IL-6 levels showed a statistically marginal significant increase compared to baseline in the sex-mismatched group at T24 (p value = 0.06 and 0.05, respectively), but not in the sex-matched group. DISCUSSION Transfusion of a single sex-mismatched RBC unit was associated with higher syndecan-1 and sTM levels compared to transfusion of sex-matched RBC unit. These findings may suggest that sex-mismatched RBC transfusion is associated with endothelial activation.
Collapse
Affiliation(s)
- Abdulrahman Alshalani
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lisa van Manen
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Margit Boshuizen
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jason P. Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Donor-recipient sex is associated with transfusion-related outcomes in critically ill patients. Blood Adv 2022; 6:3260-3267. [PMID: 35286383 PMCID: PMC9198942 DOI: 10.1182/bloodadvances.2021006402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/06/2022] [Indexed: 11/20/2022] Open
Abstract
Transfusion of female RBCs to male recipients increases the risk of ICU mortality compared with female blood to female recipients. Receiving RBCs from female donors is associated with a trend toward ARDS.
Transfusion of red blood cells (RBCs) from female donors has been associated with increased risk of mortality. This study aims to investigate the associations between donor-recipient sex and posttransfusion mortality and morbidity in critically ill patients who received RBC transfusions from either male-only donors or from female-only donors (unisex-transfusion cases). Survival analysis was used to compare 4 groups: female-to-female, female-to-male, male-to-female, and male-to-male transfusion. Multivariate logistic model was used to evaluate the association between donor sex and intensive care unit (ICU) mortality. Associations between transfusion and acute kidney injury (AKI), acute respiratory distress syndrome (ARDS), and nosocomial infections were assessed. Of the 6992 patients included in the original cohort study, 403 patients received unisex-transfusion. Survival analysis and the logistic model showed that transfusion of female RBCs to male patients was associated with an increased ICU mortality compared with transfusion of female RBCs to female patients (odds ratio, 2.43; 95% confidence interval, 1.02-5.77; P < .05). There was a trend toward increased ARDS in patients receiving RBC from female donors compared with those receiving blood from males (P = .06), whereas AKI was higher in donor-recipient sex-matched transfusion groups compared with sex-mismatched groups (P = .05). This was an exploratory study with potential uncontrolled confounders that limits broad generalization of the findings. Results warrant further studies investigating biological mechanisms underlying the association between donor sex with adverse outcomes as well as studies on the benefit of matching of blood between donor and recipient.
Collapse
|
8
|
D'Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G, Kleinman S, Lanteri M, Stone M, Busch MP, Zimring JC. Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 2021; 106:1290-1302. [PMID: 32241843 PMCID: PMC8094095 DOI: 10.3324/haematol.2020.246603] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.
Collapse
Affiliation(s)
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | | | - Julie A Reisz
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mark T Gladwin
- University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | | | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
9
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
10
|
Doan M, Sebastian JA, Caicedo JC, Siegert S, Roch A, Turner TR, Mykhailova O, Pinto RN, McQuin C, Goodman A, Parsons MJ, Wolkenhauer O, Hennig H, Singh S, Wilson A, Acker JP, Rees P, Kolios MC, Carpenter AE. Objective assessment of stored blood quality by deep learning. Proc Natl Acad Sci U S A 2020; 117:21381-21390. [PMID: 32839303 PMCID: PMC7474613 DOI: 10.1073/pnas.2001227117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stored red blood cells (RBCs) are needed for life-saving blood transfusions, but they undergo continuous degradation. RBC storage lesions are often assessed by microscopic examination or biochemical and biophysical assays, which are complex, time-consuming, and destructive to fragile cells. Here we demonstrate the use of label-free imaging flow cytometry and deep learning to characterize RBC lesions. Using brightfield images, a trained neural network achieved 76.7% agreement with experts in classifying seven clinically relevant RBC morphologies associated with storage lesions, comparable to 82.5% agreement between different experts. Given that human observation and classification may not optimally discern RBC quality, we went further and eliminated subjective human annotation in the training step by training a weakly supervised neural network using only storage duration times. The feature space extracted by this network revealed a chronological progression of morphological changes that better predicted blood quality, as measured by physiological hemolytic assay readouts, than the conventional expert-assessed morphology classification system. With further training and clinical testing across multiple sites, protocols, and instruments, deep learning and label-free imaging flow cytometry might be used to routinely and objectively assess RBC storage lesions. This would automate a complex protocol, minimize laboratory sample handling and preparation, and reduce the impact of procedural errors and discrepancies between facilities and blood donors. The chronology-based machine-learning approach may also improve upon humans' assessment of morphological changes in other biomedically important progressions, such as differentiation and metastasis.
Collapse
Affiliation(s)
- Minh Doan
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Joseph A Sebastian
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology, a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Juan C Caicedo
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Stefanie Siegert
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aline Roch
- Department of Pathology and Immunology, University of Geneva, 1205 Geneva, Switzerland
| | - Tracey R Turner
- Centre for Innovation, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Olga Mykhailova
- Centre for Innovation, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Ruben N Pinto
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology, a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Claire McQuin
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Allen Goodman
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Michael J Parsons
- Flow Cytometry Core Facilities, Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany
| | - Holger Hennig
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Anne Wilson
- Flow Cytometry Facility, Department of Formation and Research, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Oncology, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Jason P Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Paul Rees
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- College of Engineering, Swansea University, SA2 APP Swansea, United Kingdom
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Institute of Biomedical Engineering, Science and Technology, a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
| |
Collapse
|
11
|
D'Alessandro A, Fu X, Reisz JA, Kanias T, Page GP, Stone M, Kleinman S, Zimring JC, Busch M. Stored RBC metabolism as a function of caffeine levels. Transfusion 2020; 60:1197-1211. [PMID: 32394461 DOI: 10.1111/trf.15813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells. STUDY DESIGN AND METHODS We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days. RESULTS Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway. CONCLUSION Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
12
|
DeSimone RA, Plimier C, Lee C, Kanias T, Cushing MM, Sachais BS, Kleinman S, Busch MP, Roubinian NH. Additive effects of blood donor smoking and gamma irradiation on outcome measures of red blood cell transfusion. Transfusion 2020; 60:1175-1182. [DOI: 10.1111/trf.15833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Colleen Plimier
- Kaiser Permanente Northern California Division of Research Oakland California USA
| | - Catherine Lee
- Kaiser Permanente Northern California Division of Research Oakland California USA
| | | | | | | | | | - Michael P. Busch
- Vitalant Research Institute San Francisco California USA
- University of California San Francisco California USA
| | - Nareg H. Roubinian
- Kaiser Permanente Northern California Division of Research Oakland California USA
- Vitalant Research Institute San Francisco California USA
- University of California San Francisco California USA
| |
Collapse
|