1
|
Montague SJ, Price J, Pennycott K, Pavey NJ, Martin EM, Thirlwell I, Kemble S, Monteiro C, Redmond-Motteram L, Lawson N, Reynolds K, Fratter C, Bignell P, Groenheide A, Huskens D, de Laat B, Pike JA, Poulter NS, Thomas SG, Lowe GC, Lancashire J, Harrison P, Morgan NV. Comprehensive functional characterization of a novel ANO6 variant in a new patient with Scott syndrome. J Thromb Haemost 2024; 22:2281-2293. [PMID: 38492852 DOI: 10.1016/j.jtha.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.
Collapse
Affiliation(s)
- Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katherine Pennycott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natasha J Pavey
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Isaac Thirlwell
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Monteiro
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lily Redmond-Motteram
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie Lawson
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Katherine Reynolds
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Patricia Bignell
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | | | - Dana Huskens
- Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, the Midlands, United Kingdom
| | - Gillian C Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Comprehensive Care Haemophilia Centre, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan Lancashire
- Haemophilia Unit, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
2
|
Vulliamy P, Armstrong PC. Platelets in Hemostasis, Thrombosis, and Inflammation After Major Trauma. Arterioscler Thromb Vasc Biol 2024; 44:545-557. [PMID: 38235557 DOI: 10.1161/atvbaha.123.318801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Trauma currently accounts for 10% of the total global burden of disease and over 5 million deaths per year, making it a leading cause of morbidity and mortality worldwide. Although recent advances in early resuscitation have improved early survival from critical injury, the mortality rate in patients with major hemorrhage approaches 50% even in mature trauma systems. A major determinant of clinical outcomes from a major injury is a complex, dynamic hemostatic landscape. Critically injured patients frequently present to the emergency department with an acute traumatic coagulopathy that increases mortality from bleeding, yet, within 48 to 72 hours after injury will switch from a hypocoagulable to a hypercoagulable state with increased risk of venous thromboembolism and multiple organ dysfunction. This review will focus on the role of platelets in these processes. As effectors of hemostasis and thrombosis, they are central to each phase of recovery from injury, and our understanding of postinjury platelet biology has dramatically advanced over the past decade. This review describes our current knowledge of the changes in platelet behavior that occur following major trauma, the mechanisms by which these changes develop, and the implications for clinical outcomes. Importantly, supported by research in other disease settings, this review also reflects the emerging role of thromboinflammation in trauma including cross talk between platelets, innate immune cells, and coagulation. We also address the unresolved questions and significant knowledge gaps that remain, and finally highlight areas that with the further study will help deliver further improvements in trauma care.
Collapse
Affiliation(s)
- Paul Vulliamy
- Centre for Trauma Sciences (P.V.), Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul C Armstrong
- Centre for Immunobiology (P.C.A.), Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
3
|
Chen X, Wang W, Ye Y, Yang Y, Chen D, He R, Xiao Z, Liu J, Xu T, Cai Y, Feng H, Zhong C, Xiao W, Gu Y, Lu L, Xiong H, Zhang Z, Li S. The Wound Healing of Autologous Regenerative Factor on Recurrent Benign Airway Stenosis: A Canine Experimental and Pilot Study. Respiration 2024; 103:111-123. [PMID: 38342097 DOI: 10.1159/000536007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Benign airway stenosis (BAS) is a severe pathologic condition. Complex stenosis has a high recurrence rate and requires repeated bronchoscopic interventions for achieving optimal control, leading to recurrent BAS (RBAS) due to intraluminal granulation. METHODS This study explored the potential of autologous regenerative factor (ARF) for treating RBAS using a post-intubation tracheal stenosis canine model. Bronchoscopic follow-ups were conducted, and RNA-seq analysis of airway tissue was performed. A clinical study was also initiated involving 17 patients with recurrent airway stenosis. RESULTS In the animal model, ARF demonstrated significant effectiveness in preventing further collapse of the injured airway, maintaining airway patency and promoting tissue regeneration. RNA-seq results showed differential gene expression, signifying alterations in cellular components and signaling pathways. The clinical study found that ARF treatment was well-tolerated by patients with no severe adverse events requiring hospitalization. ARF treatment yielded a high response rate, especially for post-intubation tracheal stenosis and idiopathic tracheal stenosis patients. CONCLUSION The study concludes that ARF presents a promising, effective, and less-invasive method for treating RBAS. ARF has shown potential in prolonging the intermittent period and reducing treatment failure in patients with recurrent tracheal stenosis by facilitating tracheal mucosal wound repair and ameliorating tracheal fibrosis. This novel approach could significantly impact future clinical applications.
Collapse
Affiliation(s)
- Xiaobo Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongshun Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huizhou Central People's Hospital, Huizhou, China
| | - Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Difei Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiting He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhulin Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongna Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,
| | - Haiqi Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changgao Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqun Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingying Gu
- The Center of Respiratory Pathology, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Liya Lu
- Department of Anesthesiology Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hailin Xiong
- Huizhou Central People's Hospital, Huizhou, China
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hirayu N, Takasu O. Exploring the Hemostatic Effects of Platelet Lysate-Derived Vesicles: Insights from Mouse Models. Int J Mol Sci 2024; 25:1188. [PMID: 38256259 PMCID: PMC10816445 DOI: 10.3390/ijms25021188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Platelet transfusion has various challenges, and platelet-derived extracellular vesicles have been reported to have more significant procoagulant activity than platelets themselves. Furthermore, platelet products derived from platelet-rich plasma and platelet lysates (PLs) have gained attention for their physiological activity and potential role as drug delivery vehicles owing to the properties of their membranes. We aimed to investigate the characteristics of the fractions isolated through ultracentrifugation from mouse-washed PLs and assess the potential clinical applications of these fractions as a therapeutic approach for bleeding conditions. We prepared PLs from C57BL/6 mouse-washed platelets and isolated three different fractions (20K-vesicles, 100K-vesicles, and PLwo-vesicles) using ultracentrifugation. There was a notable difference in particle size distribution between 20K-vesicles and 100K-vesicles, particularly in terms of the most frequent diameter. The 20K-vesicles exhibited procoagulant activity with concentration dependence, whereas PLwo-vesicles exhibited anticoagulant activity. PLwo-vesicles did not exhibit thrombin generation capacity, and the addition of PLwo-vesicles to Microparticle Free Plasma extended the time to initiate thrombin generation by 20K-vesicles and decreased the peak thrombin value. In a tail-snip bleeding assay, pre-administration of 20K-vesicles significantly shortened bleeding time. PL-derived 20K-vesicles exhibited highly potent procoagulant activity, making them potential alternatives to platelet transfusion.
Collapse
Affiliation(s)
- Nobuhisa Hirayu
- Department of Emergency and Critical Care Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan;
| | | |
Collapse
|
5
|
Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34:2242708. [PMID: 37578045 DOI: 10.1080/09537104.2023.2242708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junyan Feng
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, China
| | - Nian Dong
- Department of Clinical Laboratory, Gulin People's Hospital, Guilin, China
| | - Pan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Price JM, Hisada Y, Hazeldine J, Bae-Jump V, Luther T, Mackman N, Harrison P. Detection of tissue factor-positive extracellular vesicles using the ExoView R100 system. Res Pract Thromb Haemost 2023; 7:100177. [PMID: 37333992 PMCID: PMC10276261 DOI: 10.1016/j.rpth.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 06/20/2023] Open
Abstract
Background Tissue factor (TF) is essential for hemostasis. TF-expressing extracellular vesicles (TF+ EVs) are released in pathological conditions, such as trauma and cancer, and are linked to thrombosis. Detection of TF+ EV antigenically in plasma is challenging due to their low concentration but may be of clinical utility. Objectives We hypthesised that ExoView can allow for direct measurement of TF+ EV in plasma, antigenically. Methods We utilized the anti-TF monoclonal antibody 5G9 to capture TF EV onto specialized ExoView chips. This was combined with fluorescent TF+ EV detection using anti-TF monoclonal antibody IIID8-AF647. We measured tumor cell-derived (BxPC-3) TF+ EV and TF+ EVs from plasma derived from whole blood with or without lipopolysaccharide (LPS) stimulation. We used this system to analyze TF+ EVs in 2 relevant clinical cohorts: trauma and ovarian cancer. We compared ExoView results with an EV TF activity assay. Results BxPC-3-derived TF+ EVs were identified with ExoView using 5G9 capture with IIID8-AF647 detection. 5G9 capture with IIID8-AF647 detection was significantly higher in LPS+ samples than in LPS samples and correlated with EV TF activity (R2 = 0.28). Trauma patient samples had higher levels of EV TF activity than healthy controls, but activity did not correlate with TF measurements made by ExoView (R2 = 0.15). Samples from patients with ovarian cancer have higher levels of EV TF activity than those from healthy controls, but activity did not correlate with TF measurement by ExoView (R2 = 0.0063). Conclusion TF+ EV measurement is possible in plasma, but the threshold and potential clinical applicability of ExoView R100, in this context, remain to be established.
Collapse
Affiliation(s)
- Joshua M.J. Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Yohei Hisada
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas Luther
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| | - Nigel Mackman
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Mahida RY, Price J, Lugg ST, Li H, Parekh D, Scott A, Harrison P, Matthay MA, Thickett DR. CD14-positive extracellular vesicles in bronchoalveolar lavage fluid as a new biomarker of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2022; 322:L617-L624. [PMID: 35234046 PMCID: PMC8993517 DOI: 10.1152/ajplung.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have indicated that extracellular vesicles (EVs) may play a role in the pathogenesis of acute respiratory distress syndrome (ARDS). EVs have been identified as potential biomarkers of disease severity and prognosis in other pulmonary diseases. We sought to characterize the EV phenotype within bronchoalveolar lavage (BAL) fluid of patients with ARDS, and to determine whether BAL EV could be used as a potential biomarker in ARDS. BAL was collected from patients with sepsis with and without ARDS, and from esophagectomy patients postoperatively (of whom a subset later developed ARDS during hospital admission). BAL EVs were characterized with regard to size, number, and cell of origin. Patients with sepsis-related ARDS had significantly higher numbers of CD14+/CD81+ monocyte-derived BAL EV than patients with sepsis without ARDS (P = 0.015). However, the converse was observed in esophagectomy patients who later developed ARDS (P = 0.003). Esophagectomy patients who developed ARDS also had elevated CD31+/CD63+ and CD31+/CD81+ endothelial-derived BAL EV (P ≤ 0.02) compared with esophagectomy patients who did not develop ARDS. Further studies are required to determine whether CD31+ BAL EV may be a predictive biomarker for ARDS in esophagectomy patients. CD14+/CD81+ BAL EV numbers were significantly higher in those patients with sepsis-related ARDS who died during the 30 days following intensive care unit admission (P = 0.027). Thus, CD14+/CD81+ BAL EVs are a potential biomarker for disease severity and mortality in sepsis-related ARDS. These findings provide the impetus to further elucidate the contribution of these EVs to ARDS pathogenesis.
Collapse
Affiliation(s)
- Rahul Y Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian T Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Hui Li
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Michael A Matthay
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, California
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|