1
|
Masuda S, Lemaitre F, Barten MJ, Bergan S, Shipkova M, van Gelder T, Vinks S, Wieland E, Bornemann-Kolatzki K, Brunet M, de Winter B, Dieterlen MT, Elens L, Ito T, Johnson-Davis K, Kunicki PK, Lawson R, Lloberas N, Marquet P, Millan O, Mizuno T, Moes DJAR, Noceti O, Oellerich M, Pattanaik S, Pawinski T, Seger C, van Schaik R, Venkataramanan R, Walson P, Woillard JB, Langman LJ. Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2024:00007691-990000000-00267. [PMID: 39331837 DOI: 10.1097/ftd.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/09/2024] [Indexed: 09/29/2024]
Abstract
ABSTRACT The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide Therapeutic Drug Monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.
Collapse
Affiliation(s)
- Satohiro Masuda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET-UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
- FHU SUPPORT, Rennes, France
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Norway
| | | | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Vinks
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- NDA Partners, A Propharma Group Company, Washington District of Columbia
| | | | | | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Brenda de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maja-Theresa Dieterlen
- Laboratory Management Research Laboratory, Cardiac Surgery Clinic, Heart Center Leipzig GmbH, University Hospital, Leipzig, Germany
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenetic and Pharmacokinetics Research Group (PMGK) Louvain Drug for Research Institute (LDRI), Catholic University of Louvain, (UCLouvain), Brussels, Belgium
| | - Taihei Ito
- Department of Organ Transplant Surgery; Fujita Health University School of Medicine, Toyoake Aichi, Japan
| | - Kamisha Johnson-Davis
- University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Pawel K Kunicki
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Roland Lawson
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
| | - Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pierre Marquet
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, France
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ofelia Noceti
- National Center for Liver Transplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tomasz Pawinski
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Walson
- University Medical School, Göttingen, Germany
| | - Jean-Baptiste Woillard
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
2
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024:101407. [PMID: 39326581 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
3
|
Todeschini L, Cristin L, Martinino A, Mattia A, Agnes S, Giovinazzo F. The Role of mTOR Inhibitors after Liver Transplantation for Hepatocellular Carcinoma. Curr Oncol 2023; 30:5574-5592. [PMID: 37366904 DOI: 10.3390/curroncol30060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Liver transplantation is a treatment option for nonresectable patients with early-stage HCC, with more significant advantages when Milan criteria are fulfilled. An immunosuppressive regimen is required to reduce the risk of graft rejection after transplantation, and CNIs represent the drugs of choice in this setting. However, their inhibitory effect on T-cell activity accounts for a higher risk of tumour regrowth. mTOR inhibitors (mTORi) have been introduced as an alternative immunosuppressive approach to conventional CNI-based regimens to address both immunosuppression and cancer control. The PI3K-AKT-mTOR signalling pathway regulates protein translation, cell growth, and metabolism, and the pathway is frequently deregulated in human tumours. Several studies have suggested the role of mTORi in reducing HCC progression after LT, accounting for a lower recurrence rate. Furthermore, mTOR immunosuppression controls the renal damage associated with CNI exposure. Conversion to mTOR inhibitors is associated with stabilizing and recovering renal dysfunction, suggesting an essential renoprotective effect. Limitations in this therapeutic approach are related to their negative impact on lipid and glucose metabolism as well as on proteinuria development and wound healing. This review aims to summarize the roles of mTORi in managing patients with HCC undergoing LT. Strategies to overcome common adverse effects are also proposed.
Collapse
Affiliation(s)
- Letizia Todeschini
- Faculty of Medicine and Surgery, University of Verona, 37134 Verona, Italy
| | - Luca Cristin
- Faculty of Medicine and Surgery, University of Verona, 37134 Verona, Italy
| | | | - Amelia Mattia
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Agnes
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Giovinazzo
- General Surgery and Liver Transplantation Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Hirata M, Yagi S, Ito T, Masano Y, Miyachi Y, Yao S, Sonoda M, Masuda S, Haga H, Hatano E. Impact of very early introduction of everolimus on liver regeneration after partial liver transplantation in rats. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023. [PMID: 36707057 DOI: 10.1002/jhbp.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND/PURPOSE This experimental study in rats aimed to investigate the impact of very early introduction (within 3 h) of everolimus (EVR) + reduced-tacrolimus (TAC) after partial liver transplantation (LT) on liver regeneration, rejection, and survival. METHODS Based on appropriate dose of EVR + reduced-TAC in 70% hepatectomy (Experiment 1), allogeneic 30% partial LT (Experiment 2) and whole LT (Experiment 3) were performed. RESULTS After partial LT in EVR + reduced-TAC therapy, restoration of liver graft weight (to that of the whole liver) was delayed compared with standard dose TAC monotherapy (standard-TAC) on day 3 (59.3% vs. 72.9%; p < .001) and 14 (88.1% vs. 95.5%; p = .01). Survival was 75%, which was not as high as the value of 100% observed for standard-TAC, because neither infection nor rejection could be prevented. By contrast, survival after whole LT was 100% as neither infection nor rejection occurred. CONCLUSIONS The very early introduction of EVR + reduced-TAC after partial LT delayed liver regeneration, and made it difficult to manage the dose required to suppress both infection and rejection. On the other hand, EVR + reduced-TAC could be introduced safely very early after whole LT.
Collapse
Affiliation(s)
- Masaaki Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Yagi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University, Kanazawa, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Masano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Miyachi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Siyuan Yao
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mari Sonoda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satohiro Masuda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Jiang J, Huang H, Chen R, Lin Y, Ling Q. Immunotherapy for hepatocellular carcinoma recurrence after liver transplantation, can we harness the power of immune checkpoint inhibitors? Front Immunol 2023; 14:1092401. [PMID: 36875077 PMCID: PMC9978931 DOI: 10.3389/fimmu.2023.1092401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death globally and liver transplantation (LT) can serve as the best curative treatment option. However, HCC recurrence after LT remains the major obstacle to the long-term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many cancers and provided a new treatment strategy for post-LT HCC recurrence. Evidence has been accumulated with the real-world application of ICIs in patients with post-LT HCC recurrence. Notably, the use of these agents as immunity boosters in recipients treated with immunosuppressors is still controversial. In this review, we summarized the immunotherapy for post-LT HCC recurrence and conducted an efficacy and safety evaluation based on the current experience of ICIs for post-LT HCC recurrence. In addition, we further discussed the potential mechanism of ICIs and immunosuppressive agents in regulating the balance between immune immunosuppression and lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Jingyu Jiang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Yilmaz S, Ince V. The Importance of the Immunosuppressive Regime on Hepatocellular Carcinoma Recurrence After Liver Transplantation. J Gastrointest Cancer 2021; 52:1350-1355. [PMID: 34611833 DOI: 10.1007/s12029-021-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) occurs in approximately 20% of recipients and these patients have median about one year survival after diagnosis. Some immunosuppressive drugs can cause development of HCC recurrence, on the other hand some immunosuppressive drugs may have a positive effect for preventing HCC recurrence. Thus, immunosuppression (IS) modification may play a role in preventing HCC recurrence. METHODS In this review, we analyzed IS treatment strategy in two parts: before HCC recurrence following LT and after HCC recurrence following LT, and after HCC recurrence following LT. RESULTS There is no proven, optimal IS protocol to prevent HCC recurrence after transplantation. Therefore, individualized immunosuppressive treatments should be tailored to the biological behaviour of HCC. Forcing the immune tolerance in terms of recurrence can probably be expressed as the most appropriate post LT period. Once HCC recurrence has developed after transplantation, again, there is no commonly accepted, optimal IS treatment, but there is a tendency to switch to IS modifications that include mTORi by minimizing CNIs and MMF. CONCLUSION There is a need for well-designed, randomized, controlled clinical studies with larger numbers of patients on this subject.
Collapse
Affiliation(s)
- Sezai Yilmaz
- Department of Surgery, Liver Transplant Institute, Inonu University, Malatya, Turkey
| | - Volkan Ince
- Department of Surgery, Liver Transplant Institute, Inonu University, Malatya, Turkey.
| |
Collapse
|