1
|
Pauly LAM, Junginger J, Oechtering GU, Hewicker-Trautwein M, Rösch S. Expression of vascular endothelial growth factor receptor-2, epidermal growth factor receptor, cyclooxygenase-2, survivin, E-cadherin and Ki-67 in canine nasal carcinomas and sarcomas - a pilot study. Front Vet Sci 2024; 11:1388493. [PMID: 39268521 PMCID: PMC11391428 DOI: 10.3389/fvets.2024.1388493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Background Malignant (intra-) nasal tumors (NTs) are the most common cause of chronic nasal discharge in dogs. Besides radiation therapy, palliative therapy is necessary in some dogs. Therefore, studies on receptor expression have supported the utility of tyrosine kinase inhibitors (TKI) in dogs with nasal carcinomas. However, studies on receptor expression in nasal sarcomas are lacking. Materials and methods This study evaluated the expression of vascular endothelial growth factor receptor-2 (VEGFR-2), epidermal growth factor receptor (EGFR), cyclooxigenase-2 (COX-2), Ki-67, survivin and E-cadherin in nasal carcinomas and sarcomas and compared it with tumor (T) categories based on computed tomography (CT). Results In 26 dogs with NTs, cross sectional imaging and upper airway endoscopy with guided biopsy collection were performed, followed by histopathological examination of NTs, revealing 19 epithelial and 7 mesenchymal tumors. While EGFR and E-cadherin were only expressed by carcinomas, the following markers were expressed by both carcinomas and sarcomas without significant differences between tumor types and T-categories: VEGFR-2 (carcinomas and sarcomas 100%), COX-2 (carcinomas 63%, sarcomas 57%), survivin (carcinomas 100%, sarcomas 86%) and Ki-67 (median expression of 28.5% in carcinomas and 17.3% in sarcomas). Conclusion Based on similarities in marker expression between canine carcinomas and sarcomas, clinical studies should further elucidate the use of TKI or COX-2 inhibitors as additional therapy in dogs with nasal sarcomas.
Collapse
Affiliation(s)
- Ljuba Anna Maria Pauly
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Small Animal Department, Ear, Nose and Throat Unit, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerhard Ulrich Oechtering
- Small Animal Department, Ear, Nose and Throat Unit, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | - Sarah Rösch
- Small Animal Department, Ear, Nose and Throat Unit, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Files R, Santos C, Queiroga FL, Silva F, Delgado L, Pires I, Prada J. Investigating Cox-2 and EGFR as Biomarkers in Canine Oral Squamous Cell Carcinoma: Implications for Diagnosis and Therapy. Curr Issues Mol Biol 2024; 46:485-497. [PMID: 38248333 PMCID: PMC10814971 DOI: 10.3390/cimb46010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common and highly aggressive dog tumor known for its local invasiveness and metastatic potential. Understanding the molecular mechanisms driving the development and progression of OSCC is crucial for improving diagnostic and therapeutic strategies. Additionally, spontaneous oral squamous cell carcinomas in dogs are an excellent model for studying human counterparts. In this study, we aimed to investigate the significance of two key molecular components, Cox-2 and EGFR, in canine OSCC. We examined 34 tumor sections from various dog breeds to assess the immunoexpression of Cox-2 and EGFR. Our findings revealed that Cox-2 was highly expressed in 70.6% of cases, while EGFR overexpression was observed in 44.1%. Cox-2 overexpression showed association with histological grade of malignancy (HGM) (p = 0.006) and EGFR with vascular invasion (p = 0.006). COX-2 and EGFR concurrent expression was associated with HGM (p = 0.002), as well as with the presence of vascular invasion (p = 0.002). These data suggest that Cox-2 and EGFR could be promising biomarkers and potential therapeutic targets, opening avenues for developing novel treatment strategies for dogs affected by OSCC. Further studies are warranted to delve deeper into these findings and translate them into clinical practice.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Catarina Santos
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
| | - Felisbina L. Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, 4200-427 Porto, Portugal
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Serviços Especializados em Veterinária, 4710-503 Braga, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (C.S.); (F.L.Q.); (F.S.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Kobayashi K, Takemura RD, Miyamae J, Mitsui I, Murakami K, Kutara K, Saeki K, Kanda T, Okamura Y, Sugiyama A. Phenotypic and molecular characterization of novel pulmonary adenocarcinoma cell lines established from a dog. Sci Rep 2023; 13:16823. [PMID: 37798461 PMCID: PMC10556002 DOI: 10.1038/s41598-023-44062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Canine pulmonary adenocarcinoma (PAC) resembles human lung tumors in never-smokers, but it is rarer than human pulmonary adenocarcinoma. Therefore, research on canine PAC is challenging. In the present study, we successfully established various novel canine PAC cell lines from a single lesion in a dog, including two parent cell lines and fourteen cloned cell lines, and characterized their cellular properties in vitro. Several of these cell lines showed epithelial-mesenchymal transition (EMT)-like and/or cancer stem cell (CSCs)-like phenotypes. We additionally assessed the sensitivity of the cells to vinorelbine in vitro. Three clonal lines, two of which showed EMT- and CSC-like phenotypes, were resistant to vinorelbine. Furthermore, we evaluated the expression and activation status of EGFR, HER2, and Ras signaling factors. The findings indicated that the cell lines we established preserved the expression and activation of these factors to varying extents. These novel canine PAC cell lines can be utilized in future research for understanding the pathogenesis and development of treatments for canine PAC.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan.
| | - Reika Deja Takemura
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Ikki Mitsui
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kohei Murakami
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kenji Kutara
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kohei Saeki
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Teppei Kanda
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Yasuhiko Okamura
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Akihiko Sugiyama
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| |
Collapse
|
4
|
Shiota Sato Y, Elbadawy M, Suzuki K, Tsunedomi R, Nagano H, Ishihara Y, Yamamoto H, Azakami D, Uchide T, Fukushima R, Tanaka R, Yoshida T, Mori T, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Aboubakr M, El-Asrag ME, Usui T, Sasaki K. Derivation of a new model of lung adenocarcinoma using canine lung cancer organoids for translational research in pulmonary medicine. Biomed Pharmacother 2023; 165:115079. [PMID: 37413906 DOI: 10.1016/j.biopha.2023.115079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Canine primary lung cancer (cPLC) is a rare malignant tumor in dogs, and exhibits poor prognosis. Effective therapeutic drugs against cPLC have not been established yet. Also, cPLC resembles human lung cancer in histopathological characteristics and gene expression profiles and thus could be an important research model for this disease. Three-dimensional organoid culture is known to recapitulate the tissue dynamics in vivo. We, therefore, tried to generate cPLC organoids (cPLCO) for analyzing the profiles of cPLC. After samples from cPLC and the corresponding normal lung tissue were collected, cPLCO were successfully generated, which recapitulated the tissue architecture of cPLC, expressed lung adenocarcinoma marker (TTF1), and exhibited tumorigenesis in vivo. The sensitivity of cPLCO to anti-cancer drugs was different among strains. RNA-sequencing analysis showed significantly upregulated 11 genes in cPLCO compared with canine normal lung organoids (cNLO). Moreover, cPLCO were enriched with the MEK-signaling pathway compared with cNLO. The MEK inhibitor, trametinib decreased the viability of several strains of cPLCO and inhibited the growth of cPLC xenografts. Collectively, our established cPLCO model might be a useful tool for identifying novel biomarkers for cPLC and a new research model for dog and human lung cancer.
Collapse
Affiliation(s)
- Yomogi Shiota Sato
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Emergency Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tomohiko Yoshida
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takuya Mori
- Kinki Animal Medical Study Center, 3-15-27, Hishie, Osaka 578-0984, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Mohamed Aboubakr
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Mohamed E El-Asrag
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
5
|
Ichimata M, Kagawa Y, Namiki K, Toshima A, Nakano Y, Matsuyama F, Fukazawa E, Harada K, Katayama R, Kobayashi T. Prognosis of primary pulmonary adenocarcinoma after surgical resection in small-breed dogs: 52 cases (2005-2021). J Vet Intern Med 2023; 37:1466-1474. [PMID: 37226683 PMCID: PMC10365062 DOI: 10.1111/jvim.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/06/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Tumor size is an important prognostic factor in lung cancer in dogs, and the canine lung carcinoma stage classification (CLCSC) recently has been proposed to subdivide tumor sizes. It is unclear if the same classification scheme can be used for small-breed dogs. OBJECTIVES To investigate whether the tumor size classification of CLCS is prognostic for survival and progression outcomes in small-breed dogs with surgically resected pulmonary adenocarcinomas (PACs). ANIMALS Fifty-two client-owned small-breed dogs with PAC. METHODS Single-center retrospective cohort study conducted between 2005 and 2021. Medical records of dogs weighing <15 kg with surgically resected lung masses histologically diagnosed as PAC were examined. RESULTS The numbers of dogs with tumor size ≤3 cm, >3 cm to ≤5 cm, >5 cm to ≤7 cm, or >7 cm were 15, 18, 14, and 5, respectively. The median progression-free interval (PFI) and overall survival time (OST) were 754 and 716 days, respectively. In univariable analysis, clinical signs, lymph node metastasis, margin, and histologic grade were associated with PFI, and age, clinical signs, margin, and lymph node metastasis were associated with OST. Tumor size classification of CLCS was associated with PFI in all categories, and tumor size >7 cm was associated with OST. In multivariable analysis, tumor size >5 cm to ≤7 cm and margin were associated with PFI, and age was associated with OST. CONCLUSIONS AND CLINICAL IMPORTANCE The tumor size classification of CLCS would be an important prognostic factor in small-breed dogs with surgically resected PACs.
Collapse
Affiliation(s)
- Masanao Ichimata
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | | | | | - Atsushi Toshima
- Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | - Yuko Nakano
- Veterinary Cancer Center, Hayashiya Animal Hospital, UjiKyotoJapan
| | - Fukiko Matsuyama
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | - Eri Fukazawa
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | - Kei Harada
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | - Ryuzo Katayama
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| | - Tetsuya Kobayashi
- Japan Small Animal Cancer Center, Public Interest Incorporated Foundation Japan Small Animal Medical CenterTokorozawaSaitamaJapan
| |
Collapse
|
6
|
Plavec T, Žagar Ž, Kessler M. Klinisch-pathologische Befunde, postoperative Überlebenszeiten und prognostische Faktoren bei Hunden mit primären Lungenkarzinomen. TIERÄRZTLICHE PRAXIS AUSGABE K: KLEINTIERE / HEIMTIERE 2022; 50:317-328. [DOI: 10.1055/a-1949-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zusammenfassung
Einleitung Primäre Karzinome der Lunge (PLK) beim Hund sind selten, ihre Behandlung erfolgt chirurgisch. Ziel dieser Studie war die Untersuchung klinisch-pathologischer Befunde, postoperativer medianer Überlebenszeiten (mÜZ) und prognostischer Faktoren.
Material und Methoden Retrospektive Auswertung von 61 Hunden mit 62 PLK, die zwischen 2007 und 2017 chirurgisch behandelt wurden. Die statistische Auswertung erfolgte mittels Kaplan-Meier und Logrank Methoden.
Ergebnisse Von 62 PLKs lagen 35 (56 %) peripher im Lungenlappen, 21 (34 %) hilusnah und 6 (10 %) betrafen den gesamten Lungenlappen. In 49 Fällen lagen differenzierte Adenokarzinome vor; niedrig differenzierte bzw. anaplastische Karzinome (n = 10) und Plattenepithelkarzinome (n = 2) waren deutlich seltener. Eine Prädisposition für bestimmte Lungenlappen war nicht nachzuweisen. Dreizehn (21 %) Patienten zeigten keine und 10 (16 %) nur unspezifische, nicht auf den Respirationstrakt hinweisende Symptome. Insgesamt zeigten 48 (79 %) Hunde klinische Symptome wie Husten, Dyspnoe, Lethargie, Gewichtsverlust, Leistungsschwäche, Erbrechen und/oder Fieber. Die tracheobronchialen Lymphknoten (TBLN) waren in 9 von 51 untersuchten Fällen histologisch positiv für Metastasierung (N1) und negativ (N0) in 42 Fällen (nicht untersucht n = 10). Daten zum Langzeitverlauf waren für 50 Patienten verfügbar. Prognostisch relevante Variablen waren Lymphknotenmetastasierung in die TBLN (mÜZ: N1 41 Tage, N0 570 Tage; p < 0,01), Lungenmetastasen (mÜZ: M1 125 Tage, M0 630 Tage; p < 0,01), histologischer Subtyp (mÜZ: differenzierte Karzinome 620 Tage; andere Karzinome 135 Tage; p < 0,01), Tumordurchmesser größer als 3 cm (mÜZ < 3 cm 1155 Tage, ≥ 3 cm 330 Tage; p = 0,02) und Tumorlokalisation (mÜZ: hilusnah 330 Tage, peripher 650 Tage; p = 0,04).
Schlussfolgerung Beim PLK sind TBLN Status, Organmetastasen, Tumorlokalisation, histologischer Subtyp und Tumorgröße prognostisch relevante Kriterien. Hunde ohne prognostisch negative Faktoren können lange Überlebenszeiten aufweisen. In mehr als einem Drittel der Fälle bleiben die Tumoren asymptomatisch (21 %) bzw. ohne respirationstraktspezifische (16 %) Symptome.
Collapse
|
7
|
Ciriano E, Marrington M, Grant J. Lung lobe torsion in association with a pulmonary papillary carcinoma in a dog. J S Afr Vet Assoc 2022; 93:147-150. [DOI: 10.36303/jsava.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- E Ciriano
- Northwest Veterinary Specialists,
United Kingdom
| | - M Marrington
- Northwest Veterinary Specialists,
United Kingdom
| | - J Grant
- Northwest Veterinary Specialists,
United Kingdom
| |
Collapse
|
8
|
Fu DR, Kadosawa T. Comparison of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) immunohistochemical expression and outcomes in canine nasal carcinomas treated with radiation therapy. J Vet Med Sci 2022; 84:1237-1243. [PMID: 35851267 PMCID: PMC9523303 DOI: 10.1292/jvms.22-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) has been reported in human nasopharyngeal and canine nasal carcinomas. The present study measured EGFR
and COX-2 expression and calculated correlations between these proteins and clinical variables and outcomes in dogs with nasal carcinoma treated with radiation therapy. Before treatment, the
immunohistochemistry of EGFR and COX-2 was performed in 67 biopsied tissues from canine nasal carcinomas. The correlations between these protein levels, clinical variables, and outcomes were
evaluated. EGFR and COX-2 were detected in 88.1% and 82.1% of our samples, respectively. Neither EGFR nor COX-2 was associated with T stage and cribriform plate destruction. Dogs with low
EGFR levels had a significantly longer survival time than dogs with high EGFR expression (P=0.043). The COX-2 expression level was not significantly associated with survival
times after radiation therapy (P=0.653). Overexpression of EGFR is negatively correlated with survival in dogs with nasal carcinoma. Future studies should identify tumor
biomarkers to develop therapeutic targets for effective treatments for canine nasal carcinomas.
Collapse
Affiliation(s)
- Dah-Renn Fu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University.,Small Animal Clinical Sciences, Graduate School of Veterinary Medicine, Rakuno Gakuen University
| | - Tsuyoshi Kadosawa
- Small Animal Clinical Sciences, Graduate School of Veterinary Medicine, Rakuno Gakuen University
| |
Collapse
|
9
|
Tanaka T, Ohishi T, Saito M, Suzuki H, Kaneko MK, Kawada M, Kato Y. Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Exerted Antitumor Activities in Mouse Xenograft Models of Canine Mammary Gland Tumor. Monoclon Antib Immunodiagn Immunother 2022; 41:142-149. [PMID: 35666554 DOI: 10.1089/mab.2022.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy through gene amplification and/or protein overexpression. In our previous study, we developed an anti-human EGFR (hEGFR) monoclonal antibody, clone EMab-134 (mouse IgG1, kappa), which specifically detects both hEGFR and dog EGFR (dEGFR). The defucosylated mouse IgG2a version of EMab-134 (134-mG2a-f) exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed Chinese hamster ovary-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. In this study, the reactivity of 134-mG2a-f against a canine mammary gland tumor cell line (SNP) was examined by flow cytometry and immunocytochemistry. Furthermore, 134-mG2a-f highly exerted ADCC and CDC for SNP. The administration of 134-mG2a-f significantly suppressed the SNP xenograft growth. These results suggest that 134-mG2a-f exerts antitumor effects against dEGFR-expressing canine mammary gland tumors, and could be valuable as part of an antibody treatment regimen for them.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Li G, Ohishi T, Kaneko MK, Takei J, Mizuno T, Kawada M, Saito M, Suzuki H, Kato Y. Defucosylated Mouse-Dog Chimeric Anti-EGFR Antibody Exerts Antitumor Activities in Mouse Xenograft Models of Canine Tumors. Cells 2021; 10:cells10123599. [PMID: 34944112 PMCID: PMC8700185 DOI: 10.3390/cells10123599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy via gene amplification and protein overexpression. Previously, we developed an anti-human EGFR (hEGFR) monoclonal antibody, namely EMab-134, which detects hEGFR and dog EGFR (dEGFR) with high sensitivity and specificity. In this study, we produced a defucosylated mouse–dog chimeric anti-EGFR monoclonal antibody, namely E134Bf. In vitro analysis revealed that E134Bf highly exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against a canine osteosarcoma cell line (D-17) and a canine fibroblastic cell line (A-72), both of which express endogenous dEGFR. Moreover, in vivo administration of E134Bf significantly suppressed the development of D-17 and A-72 compared with the control dog IgG in mouse xenografts. These results indicate that E134Bf exerts antitumor effects against dEGFR-expressing canine cancers and could be valuable as part of an antibody treatment regimen for dogs.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan;
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| |
Collapse
|
11
|
Tateyama N, Nanamiya R, Ohishi T, Takei J, Nakamura T, Yanaka M, Hosono H, Saito M, Asano T, Tanaka T, Sano M, Kawada M, Kaneko MK, Kato Y. Defucosylated Anti-Epidermal Growth Factor Receptor Monoclonal Antibody 134-mG 2a-f Exerts Antitumor Activities in Mouse Xenograft Models of Dog Epidermal Growth Factor Receptor-Overexpressed Cells. Monoclon Antib Immunodiagn Immunother 2021; 40:177-183. [PMID: 34424762 DOI: 10.1089/mab.2021.0022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a type I transmembrane protein, which is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. EGFR is a crucial mediator of cell growth and differentiation and forms homodimers or heterodimers with other HER family members to activate downstream signaling cascades. We previously established an anti-human EGFR (hEGFR) monoclonal antibody (mAb), clone EMab-134 (mouse IgG1), by immunizing mice with the ectodomain of hEGFR. In this study, the subclass of EMab-134 was converted from IgG1 to IgG2a (134-mG2a) and further defucosylated (134-mG2a-f) to facilitate antibody-dependent cellular cytotoxicity (ADCC). Although 134-mG2a-f was developed against hEGFR, it was shown to cross-react with dog EGFR (dEGFR) using flow cytometry. The dissociation constant (KD) of 134-mG2a-f against dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells was determined by flow cytometry to be 3.3 × 10-9 M, indicating that 134-mG2a-f possesses a high binding affinity to dEGFR. Analysis in vitro revealed that 134-mG2a-f contributed to high levels of ADCC and complement-dependent cytotoxicity (CDC) in experiments targeting CHO/dEGFR cells. Furthermore, the in vivo administration of 134-mG2a-f significantly inhibited the development of CHO/dEGFR in comparison with the results observed in response to control mouse IgG. Taken together, the findings of this study demonstrate that 134-mG2a-f could be useful as part of a therapeutic regimen for dEGFR-expressing canine cancers.
Collapse
Affiliation(s)
- Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Doyle HA, Gee RJ, Masters TD, Gee CR, Booth CJ, Peterson-Roth E, Koski RA, Helfand SC, Price L, Bascombe D, Jackson D, Ho R, Post GR, Mamula MJ. Vaccine-induced ErbB (EGFR/HER2)-specific immunity in spontaneous canine cancer. Transl Oncol 2021; 14:101205. [PMID: 34419682 PMCID: PMC8379704 DOI: 10.1016/j.tranon.2021.101205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022] Open
Abstract
Spontaneous dog cancers closely resemble human cancer. Dogs with EGFR associated tumors were immunized with an EGFR/HER2 peptide vaccine. EGFR peptide vaccinated dogs developed anti-EGFR/HER2 antibodies. Vaccinated dogs have anti-EGFR antibody and T cells infiltrating tumors. Vaccinated dogs with osteosarcoma had tumor regression and increased survival.
Epidermal Growth Factor Receptor (EGFR) is overexpressed on a number of human cancers, and often is indicative of a poor outcome. Treatment of EGFR/HER2 overexpressing cancers includes monoclonal antibody therapy (cetuximab/trastuzumab) either alone or in conjunction with other standard cancer therapies. While monoclonal antibody therapy has been proven to be efficacious in the treatment of EGFR/HER2 overexpressing tumors, drawbacks include the lack of long-lasting immunity and acquired resistance to monoclonal therapy. An alternative approach is to induce a polyclonal anti-EGFR/HER2 tumor antigen response by vaccine therapy. In this phase I/II open-label study, we examined anti-tumor immunity in companion dogs with spontaneous EGFR expressing tumors. Canine cancers represent an outbred population in which the initiation, progression of disease, mutations and growth factors closely resemble that of human cancers. Dogs with EGFR expressing tumors were immunized with a short peptide of the EGFR extracellular domain with sequence homology to HER2. Serial serum analyses demonstrated high titers of EGFR/HER2 binding antibodies with biological activity similar to that of cetuximab and trastuzumab. Canine antibodies bound both canine and human EGFR on tumor cell lines and tumor tissue. CD8 T cells and IgG deposition were evident in tumors from immunized dogs. The antibodies inhibited EGFR intracellular signaling and inhibited tumor growth in vitro. Additionally, we illustrate objective responses in reducing tumors at metastatic sites in host animals. The data support the approach of amplifying anti-tumor immunity that may be relevant in combination with other immune modifying therapies such as checkpoint inhibitors.
Collapse
Key Words
- Abbreviations: BSA, bovine serum albumin
- CTLA-4, cytotoxic T-lymphocyte associated protein 4
- Canine
- DAPI, 4′,6-diamidino-2-phenylindole
- EGF, epidermal growth factor
- EGFR
- EGFR, epidermal growth factor receptor
- FBS, fetal bovine serum
- GAPDH, glyceraldehyde-3 phosphate dehydrogenase
- HER2, human epidermal growth factor receptor 2, HER3, human epidermal growth factor receptor 3
- HER4, human epidermal growth factor receptor 4
- MFI, mean fluorescence intensity
- MHC, major histocompatibility complex
- OD, optical density
- OSA, osteosarcoma
- Osteosarcoma
- PBS, phosphate buffered saline
- Peptide
- RT, room temperature
- Vaccine
- pERK, phosphorylated extracellular signal-regulated kinase
- pNPP, p-nitrophenyl phosphate
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Renelle J Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Tyler D Masters
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Christian R Gee
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA
| | - Carmen J Booth
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | - Stuart C Helfand
- Oregon State University (Professor, retired), Corvallis, OR 97330, USA
| | - Lauren Price
- Clinton Veterinary Hospital, Clinton, CT 06413, USA
| | | | | | - Rita Ho
- MedVet, Norwalk, CT 06850, USA
| | - Gerald R Post
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; MedVet, Norwalk, CT 06850, USA
| | - Mark J Mamula
- Section of Rheumatology, Yale School of Medicine, P.O. Box 208031, New Haven, CT 06520-8031, USA.
| |
Collapse
|
13
|
Able H, Wolf-Ringwall A, Rendahl A, Ober CP, Seelig DM, Wilke CT, Lawrence J. Computed tomography radiomic features hold prognostic utility for canine lung tumors: An analytical study. PLoS One 2021; 16:e0256139. [PMID: 34403435 PMCID: PMC8370631 DOI: 10.1371/journal.pone.0256139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Quantitative analysis of computed tomography (CT) radiomic features is an indirect measure of tumor heterogeneity, which has been associated with prognosis in human lung carcinoma. Canine lung tumors share similar features to human lung tumors and serve as a model in which to investigate the utility of radiomic features in differentiating tumor type and prognostication. The purpose of this study was to correlate first-order radiomic features from canine pulmonary tumors to histopathologic characteristics and outcome. Disease-free survival, overall survival time and tumor-specific survival were calculated as days from the date of CT scan. Sixty-seven tumors from 65 dogs were evaluated. Fifty-six tumors were classified as primary pulmonary adenocarcinomas and 11 were non-adenocarcinomas. All dogs were treated with surgical resection; 14 dogs received adjuvant chemotherapy. Second opinion histopathology in 63 tumors confirmed the histologic diagnosis in all dogs and further characterized 53 adenocarcinomas. The median overall survival time was longer (p = 0.004) for adenocarcinomas (339d) compared to non-adenocarcinomas (55d). There was wide variation in first-order radiomic statistics across tumors. Mean Hounsfield units (HU) ratio (p = 0.042) and median mean HU ratio (p = 0.042) were higher in adenocarcinomas than in non-adenocarcinomas. For dogs with adenocarcinoma, completeness of excision was associated with overall survival (p<0.001) while higher mitotic index (p = 0.007) and histologic score (p = 0.037) were associated with shorter disease-free survival. CT-derived tumor variables prognostic for outcome included volume, maximum axial diameter, and four radiomic features: integral total, integral total mean ratio, total HU, and max mean HU ratio. Tumor volume was also significantly associated with tumor invasion (p = 0.044). Further study of radiomic features in canine lung tumors is warranted as a method to non-invasively interrogate CT images for potential predictive and prognostic utility.
Collapse
Affiliation(s)
- Hannah Able
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail: (HA); (JL)
| | - Amber Wolf-Ringwall
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christopher P. Ober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chris T. Wilke
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Radiation Oncology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (HA); (JL)
| |
Collapse
|
14
|
Cho SH, Seung BJ, Kim SH, Bae MK, Lim HY, Sur JH. EGFR Overexpression and Sequence Analysis of KRAS, BRAF, and EGFR Mutation Hot Spots in Canine Intestinal Adenocarcinoma. Vet Pathol 2021; 58:674-682. [PMID: 33926328 DOI: 10.1177/03009858211009778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many human colorectal cancers and anti-EGFR agents are employed as immunotherapies. However, KRAS, EGFR, and BRAF gene mutations can influence the activity of the anti-EGFR agents. We evaluated EGFR expression at protein and mRNA levels in canine intestinal adenocarcinomas using immunohistochemistry (IHC) and RNA in situ hybridization (RNA-ISH). We also investigated the mutation status of EGFR, KRAS, and BRAF to aid the development of anti-EGFR agents for canine intestinal adenocarcinoma. EGFR expression was highest in adenocarcinoma, followed by intramucosal neoplasia (adenoma and in situ carcinoma), and nonneoplastic canine intestinal tissue, at both protein (P = .000) and mRNA (P = .005) levels. The EGFR, KRAS, and BRAF genes showed wild-type sequences at the mutation hot spots in all 13 specimens. Thus, EGFR might serve as a promising diagnostic marker in canine intestinal adenocarcinoma, and further studies would be needed to develop EGFR-targeted anticancer therapies.
Collapse
Affiliation(s)
- Seung-Hee Cho
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | | | - Soo-Hyeon Kim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Min-Kyung Bae
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Ha-Young Lim
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Jung-Hyang Sur
- 34965 Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Rose RJ, Worley DR. A Contemporary Retrospective Study of Survival in Dogs With Primary Lung Tumors: 40 Cases (2005-2017). Front Vet Sci 2020; 7:519703. [PMID: 33195509 PMCID: PMC7645112 DOI: 10.3389/fvets.2020.519703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objective: To report the median survival time in a contemporary cohort of dogs with primary lung tumors and intrathoracic nodal metastasis. Design: Retrospective Case Series. Animals (or sample): Dogs with primary lung tumors treated with lung lobectomy and lymph node biopsy. Procedures: The medical record database at Colorado State University was queried for dogs with primary lung tumors from January 1, 2005 to December 31, 2017. Patients were identified for inclusion if they had lung lobectomy and an intrathoracic lymph node biopsy performed. The median survival time (MST) for lymph node positive (LN+) and negative dogs (LN–) was calculated as well as the MST in dogs that did or did not receive adjuvant chemotherapy. Differences were compared between groups with significance set at p < 0.05. Results: The MST in LN+ dogs (n = 11) was 167 days which was not statistically different from LN– dogs (n = 29) at 456 days (p = 0.2407). No significant difference in the MST in LN+ dogs was identified between dogs that received adjuvant chemotherapy (n = 4; 110 days) and those that did not receive adjuvant chemotherapy (n = 6; 125 days) (p = 0.4409). There was no difference in survival time in LN– dogs receiving chemotherapy (n = 12; 335 days) as compared to those LN– dogs (n = 10) that did not receive adjuvant chemotherapy (258.5 days; p = 0.6475). Conclusions and Clinical Relevance: The survival of primary pulmonary neoplasia in dogs with intrathoracic nodal metastasis is longer than previously reported in this contemporary cohort. Chemotherapy did not appear to improve survival in LN+ or LN– dogs. The combination of tumor size between 100 and 999 cm3 and positive lymph node status significantly reduced survival.
Collapse
Affiliation(s)
- Ruth J Rose
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States.,Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| | - Deanna R Worley
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States.,Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Yoshimoto S, Kato D, Kamoto S, Yamamoto K, Tsuboi M, Shinada M, Ikeda N, Tanaka Y, Yoshitake R, Eto S, Saeki K, Chambers J, Hashimoto Y, Uchida K, Nishimura R, Nakagawa T. Overexpression of human epidermal growth factor receptor 2 in canine primary lung cancer. J Vet Med Sci 2020; 82:804-808. [PMID: 32249253 PMCID: PMC7324825 DOI: 10.1292/jvms.20-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been reported in
various human cancers. HER2-targeted therapies showed clinical responses in humans with
HER2-positive tumors. The incidence of canine primary lung cancer (cPLC) is increasing,
but there are no effective systemic therapies for dogs with late-stage cPLC. HER2-targeted
therapy could be an option for cPLC, but HER2 expression in cPLC remains unknown. We
evaluated HER2 expression in cPLC. Immunohistochemical analysis revealed that 3 samples
(19%) scored 3+; 8 (50%), 2+; 5 (31%); and 1+ and 0 (0%), 0. Of the cPLC tissues, 69% were
HER2 positive (scored ≥2+). These data would lead to further evaluation of the role of
HER2 in cPLC as a mechanism of malignancy and therapeutic target.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kamoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kie Yamamoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shotaro Eto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Sobczyńska-Rak A, Żylińska B, Polkowska I, Szponder T. Elevated EGF Levels in the Blood Serum of Dogs with Periodontal Diseases and Oral Tumours. ACTA ACUST UNITED AC 2018; 32:507-515. [PMID: 29695553 DOI: 10.21873/invivo.11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Paradontopathy and neoplasms of the oral cavity represent one of the greatest challenges in human and animal dentistry. EGF plays a key role in maintaining the integrity and proper rate of cell proliferation in normal oral epithelium. The aim of the present study was to study serum levels of EGF in dogs diagnosed with periodontal diseases and oral cavity tumours. MATERIALS AND METHODS The samples comprised of cancerous tissue sections and serum obtained from dogs of various breeds, aged between 5-13 years. Serum EGF concentrations were measured by an immunoenzymatic method. RESULTS The median for EGF concentration in serum of dogs suffered from severe periodontal diseases was greater when compared to the control group. EGF concentration in dogs with malignant tumours was significantly higher than in those with non-malignant growths. A positive correlation between EGF concentration and tumour size was also observed. EGF level in dogs diagnosed with benign tumours was comparable to the control group. CONCLUSION The blood serum level of EGF increases significantly in patients with malignant oral tumours and advanced periodontal disease. In malignant tumours, the high level of EGF correlates with the size and invasiveness of the neoplasm.
Collapse
Affiliation(s)
- Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
18
|
Yang Y, Zhou W, Wu J, Yao L, Xue L, Zhang Q, Wang Z, Wang X, Dong S, Zhao J, Yin D. Antitumor activity of nimotuzumab in combination with cisplatin in lung cancer cell line A549 in vitro. Oncol Lett 2018; 15:5280-5284. [PMID: 29552167 DOI: 10.3892/ol.2018.7923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Nimotuzumab, a humanized IgG1 monoclonal antibody against epidermal growth factor receptor (EGFR), increases radiosensitivity in lung cancer. Cisplatin is an effective antitumor agent in lung cancer. In the present study, the antitumor activity of nimotuzumab combined with cisplatin was investigated in A549 lung cancer cells. Viability, cell cycle distribution and cyclin D1 expression were assessed following treatment with nimotuzumab alone, cisplatin alone, nimotuzumab in combination with cisplatin, and nimotuzumab followed sequentially by cisplatin. The inhibitory effect on cell viability of nimotuzumab sequentially followed by cisplatin was higher compared with cisplatin alone (82.17±1.62 vs. 56.97±1.42%). Compared with treatment by cisplatin alone, cell cycle analysis by flow cytometry demonstrated that the percentage of cells in the G0/G1 phase was increased when A549 cells were treated with nimotuzumab followed sequentially by cisplatin (P<0.01). However, the proportion of cells in G0/G1 phase was decreased when A549 cells were treated with nimotuzumab and cisplatin simultaneously compared with cisplatin alone (P<0.05). Cyclin D1 expression was decreased in all chemotherapy treatment groups; the most significant decrease was in A549 cells treated with nimotuzumab followed sequentially by cisplatin. Nimotuzumab may enhance the antitumor activity of cisplatin on A549 cells. The cell cycle arrest at G0/G1 observed may have been due to decreased cyclin D1 levels. Potential antagonism was identified when A549 cells were treated with nimotuzumab and cisplatin simultaneously, indicating that targeted therapy may be more effective when administered prior to conventional chemotherapy.
Collapse
Affiliation(s)
- Yanhong Yang
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Wenwen Zhou
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Jiandong Wu
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Lixin Yao
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Lei Xue
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| | - Qianyi Zhang
- College of Pharmacy, University of Tasmania, Hobart, TAS 7001, Australia
| | - Zhenzhen Wang
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China.,Postgraduate College of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaoyu Wang
- Postgraduate College of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Shu Dong
- Biotecan Medical Diagnostics Co., Ltd., Shanghai 201203, P.R. China.,Department of Medicine, Zhangjiang Center for Translational Medicine, Shanghai 201203, P.R. China
| | - Jiangman Zhao
- Biotecan Medical Diagnostics Co., Ltd., Shanghai 201203, P.R. China.,Department of Medicine, Zhangjiang Center for Translational Medicine, Shanghai 201203, P.R. China
| | - Duanduan Yin
- Department of Oncology, Qinhuangdao No. 1 People's Hospital, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
19
|
Hocker SE, Higginbotham ML, Schermerhorn T, Henningson J. Receptor tyrosine kinase expression and phosphorylation in canine nasal carcinoma. Res Vet Sci 2017; 115:484-489. [PMID: 28783596 DOI: 10.1016/j.rvsc.2017.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 11/18/2022]
Abstract
Preliminary studies have supported use of toceranib phosphate (Palladia®) in treatment of canine nasal carcinomas, though the mechanisms of its activity are unknown. This study evaluated sixteen canine nasal carcinoma and five normal nasal epithelium samples for expression and phosphorylation of known targets of toceranib [vascular endothelial growth factor receptor-2 (VEGR2), platelet derived growth factor alpha (PDGFR-α), platelet derived growth factor receptor beta (PDGFR-β), and stem cell factor receptor (c-KIT)] and epidermal growth factor receptor 1 (EGFR1) using immunohistochemistry, RT-PCR and a receptor tyrosine kinase (RTK) phosphorylation panel. Protein for VEGFR2 was expressed in all carcinomas, PDGFR-α was noted in 15/16, whereas PDGFR-β was detected in 3/16 samples, but showed significant stromal staining. Protein expression for c-KIT was present in 4/16 and EGFR1 was noted in 14/16 samples. Normal tissue showed variable protein expression of the RTKs. Messenger RNA for VEGFR2, PDGFR-β, and c-KIT were noted in all samples. Messenger RNA for PDGFR-α and EGFR1 were detected in 15/16 samples. All normal nasal tissue detected messenger RNA. Phosphorylation of VEGFR2, PDGFR-α, PDGFR-β and c-KIT was not observed in any carcinoma or normal nasal sample, but phosphorylation of EGFR1 was noted in 10/16 carcinoma and 3/5 normal samples. The absence of phosphorylated RTK targets of toceranib suggests any clinical effect of toceranib occurs through inhibition of alternative unidentified RTK pathways in canine nasal carcinomas. The observed protein and message expression and phosphorylation of EGFR1 in the nasal carcinoma samples merits further inquiry into EGFR1 as a therapeutic target for this cancer.
Collapse
Affiliation(s)
- Samuel E Hocker
- Ontario Veterinary College 2119 ANCC Bldg 49 50 Stone Rd. East Guelph, ON N1G 2W1, Canada.
| | - Mary Lynn Higginbotham
- Ontario Veterinary College 2119 ANCC Bldg 49 50 Stone Rd. East Guelph, ON N1G 2W1, Canada.
| | - Thomas Schermerhorn
- Ontario Veterinary College 2119 ANCC Bldg 49 50 Stone Rd. East Guelph, ON N1G 2W1, Canada.
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Dennison Ave., Manhattan, KS 66506, United States.
| |
Collapse
|
20
|
Beck J, Miller MA, Frank C, DuSold D, Ramos-Vara JA. Surfactant Protein A and Napsin A in the Immunohistochemical Characterization of Canine Pulmonary Carcinomas: Comparison With Thyroid Transcription Factor-1. Vet Pathol 2017; 54:767-774. [PMID: 28578631 DOI: 10.1177/0300985817712559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thyroid transcription factor-1 (TTF-1) is a specific and sensitive marker for canine pulmonary tumors but is also expressed in thyroid carcinomas, which commonly metastasize to lung. Napsin A and surfactant protein A (SP-A) are used in the histologic diagnosis of non-small-cell lung cancer in humans but have not been thoroughly evaluated in neoplasms of dogs. The objective of this study was to compare the efficacy of immunohistochemistry for SP-A, napsin A, and TTF-1 in the diagnosis of canine pulmonary carcinomas. TTF-1, napsin A, and SP-A antibodies were applied to 67 formalin-fixed, paraffin-embedded canine pulmonary tumors. Although each marker had good sensitivity, only 3% (2/67) of lung tumors were negative for SP-A compared with 7% (5/67) and 9% (6/67) for napsin A and TTF-1, respectively. Each antigen was detected in a greater percentage of cells of tumors with acinar or papillary patterns compared with those with squamous differentiation. SP-A immunoreactivity was absent in all 113 nonpulmonary tumors tested. Of 108 normal tissues, SP-A was detected only in lung and in 1 of 6 adrenal, 1 of 3 endometrial, and 1 of 4 hepatic sections. Based on these findings, SP-A and napsin A are useful markers of canine lung epithelial neoplasia. Of these, SP-A is the most sensitive and specific (a possible pitfall is the need to distinguish entrapped normal pulmonary epithelial cells or alveolar macrophages from neoplastic cells) and can be used in combination with TTF-1 or napsin A to improve detection and differentiation of pulmonary carcinomas from metastatic tumors in the canine lung.
Collapse
Affiliation(s)
- Jessica Beck
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,2 Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Margaret A Miller
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chad Frank
- 3 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Dee DuSold
- 1 Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
21
|
Mantovani FB, Morrison JA, Mutsaers AJ. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells. BMC Vet Res 2016; 12:82. [PMID: 27245053 PMCID: PMC4888507 DOI: 10.1186/s12917-016-0707-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. RESULTS Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. CONCLUSIONS Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of osteosarcoma cells does not appear to be related to EGFR signalling exclusively. Angiogenic responses to radiation and kinase inhibitors are similarly likely to be multifactorial and require further investigation.
Collapse
Affiliation(s)
- Fernanda B Mantovani
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jodi A Morrison
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
22
|
Singer J, Fazekas J, Wang W, Weichselbaumer M, Matz M, Mader A, Steinfellner W, Meitz S, Mechtcheriakova D, Sobanov Y, Willmann M, Stockner T, Spillner E, Kunert R, Jensen-Jarolim E. Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients. Mol Cancer Ther 2014; 13:1777-1790. [PMID: 24755200 DOI: 10.1158/1535-7163.mct-13-0288] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Passive immunotherapy with monoclonal antibodies represents a cornerstone of human anticancer therapies, but has not been established in veterinary medicine yet. As the tumor-associated antigen EGFR (ErbB-1) is highly conserved between humans and dogs, and considering the effectiveness of the anti-EGFR antibody cetuximab in human clinical oncology, we present here a "caninized" version of this antibody, can225IgG, for comparative oncology studies. Variable region genes of 225, the murine precursor of cetuximab, were fused with canine constant heavy gamma and kappa chain genes, respectively, and transfected into Chinese hamster ovary (CHO) DUKX-B11 cells. Of note, 480 clones were screened and the best clones were selected according to productivity and highest specificity in EGFR-coated ELISA. Upon purification with Protein G, the recombinant cetuximab-like canine IgG was tested for integrity, correct assembly, and functionality. Specific binding to the surface of EGFR-overexpressing cells was assessed by flow cytometry and immunofluorescence; moreover, binding to canine mammary tissue was demonstrated by immunohistochemistry. In cell viability and proliferation assays, incubation with can225IgG led to significant tumor cell growth inhibition. Moreover, this antibody mediated significant tumor cell killing via phagocytosis in vitro. We thus present here, for the first time, the generation of a canine IgG antibody and its hypothetical structure. On the basis of its cetuximab-like binding site, on the one hand, and the expression of a 91% homologous EGFR molecule in canine cancer, on the other hand, this antibody may be a promising research compound to establish passive immunotherapy in dog patients with cancer.
Collapse
Affiliation(s)
- Josef Singer
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna
| | - Judit Fazekas
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien
| | - Wei Wang
- Department of Immunology, Capital Medical University, Beijing, PR China
| | - Marlene Weichselbaumer
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna
| | - Miroslawa Matz
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
| | - Alexander Mader
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Willibald Steinfellner
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sarah Meitz
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna
| | - Diana Mechtcheriakova
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
| | - Yuri Sobanov
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
| | - Michael Willmann
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna
| | - Thomas Stockner
- Centre for Physiology and Pharmacology, Medical University of Vienna
| | - Edzard Spillner
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Renate Kunert
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Immunology and Oncology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna
| |
Collapse
|
23
|
EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model? PLoS One 2014; 9:e85388. [PMID: 24454858 PMCID: PMC3893207 DOI: 10.1371/journal.pone.0085388] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR or HER-1) and its analog c-erbB-2 (HER-2) are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas) were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7%) carcinomas were classified as intestinal-type and 9 (64.3%) as diffuse-type. EGFR was overexpressed (≥1+) in 8 (42.1%) cases and HER-2 (3+) in 11 (57.9%) cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80%) than in the diffuse-type (11.1%, p = 0.023). KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R). EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.
Collapse
|
24
|
Mariotti ET, Premanandan C, Lorch G. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation. BMC Vet Res 2014; 10:19. [PMID: 24423144 PMCID: PMC3896673 DOI: 10.1186/1746-6148-10-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18-21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. RESULTS The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the corresponding normal lung tissue. The EGFR mRNA, protein expression and phosphorylation were not increased compared to the normal lung and no activating mutations were identified in exons 18-21. CONCLUSIONS Canine pulmonary adenocarcinoma TKRs are detected at both the mRNA and protein levels and are activated. Further investigation into the contribution of TKR activation in cpAC tumorigenesis is warranted.
Collapse
Affiliation(s)
| | | | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Guimarães M, Carvalho M, Pires I, Prada J, Gil AG, Lopes C, Queiroga F. Concurrent Expression of Cyclo-oxygenase-2 and Epidermal Growth Factor Receptor in Canine Malignant Mammary Tumours. J Comp Pathol 2014; 150:27-34. [DOI: 10.1016/j.jcpa.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/03/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|