1
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
2
|
Witta S, Collins KP, Ramirez DA, Mannheimer JD, Wittenburg LA, Gustafson DL. Vinblastine pharmacokinetics in mouse, dog, and human in the context of a physiologically based model incorporating tissue-specific drug binding, transport, and metabolism. Pharmacol Res Perspect 2023; 11:e01052. [PMID: 36631976 PMCID: PMC9834611 DOI: 10.1002/prp2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction. To characterize sources of variability in VBL PK, we developed a physiologically based pharmacokinetic (PBPK) model in Mdr1a/b(-/-) knockout and wild-type mice by incorporating key drivers of PK, including ABCB1 efflux, CYP3A4 metabolism, and tissue-specific tubulin binding, and scaled this model to accurately simulate VBL PK in humans and pet dogs. To investigate the capability of the model to capture interindividual variability in clinical data, virtual populations of humans and pet dogs were generated through Monte Carlo simulation of physiologic and biochemical parameters and compared to the clinical PK data. This model provides a foundation for predictive modeling of VBL PK. The base PBPK model can be further improved with supplemental experimental data identifying drug-drug interactions, ABCB1 polymorphisms and expression, and other sources of physiologic or metabolic variability.
Collapse
Affiliation(s)
- Sandra Witta
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Keagan P. Collins
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | | | - Joshua D. Mannheimer
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - Luke A. Wittenburg
- Department of Surgical and Radiological SciencesUniversity of CaliforniaDavisCaliforniaUSA
- University of CaliforniaDavis Comprehensive Cancer CenterSacramentoCaliforniaUSA
| | - Daniel L. Gustafson
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
- Developmental Therapeutics ProgramUniversity of Colorado Cancer CenterAuroraColoradoUSA
- Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
3
|
Tonero ME, Li Z, Reinhart JM. Cytochrome P450 reaction phenotyping of itraconazole hydroxylation in the dog. J Vet Pharmacol Ther 2022; 45:255-264. [PMID: 35389533 DOI: 10.1111/jvp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Itraconazole (ITZ) is an important drug in the treatment of superficial and deep mycoses in dogs. Its primary metabolite is hydroxy-itraconazole, which has antifungal activity similar to the parent compound. The purpose of this study was to identify the cytochrome P450 enzyme (CYP) isoform(s) responsible for ITZ hydroxylation in canine liver. Reaction kinetics for ITZ hydroxylation were determined in a panel of canine recombinant CYPs and dog liver microsomes (DLMs). Findings were confirmed using CYP isoform-specific inhibitors in rCYPs and DLMs. In rCYP experiments, CYP2D15 and CYP3A12 had highest activity for ITZ hydroxylation. In inhibitor experiments, quinidine and erythromycin inhibited ITZ hydroxylation in CYP2D15 and CYP3A12, respectively, in an isoform-specific manner. In DLMs, quinidine and erythromycin combined inhibited ITZ hydroxylation more than erythromycin alone but not quinidine alone. However, this may be related to inhibitor potency rather than the contribution of the individual CYP isoforms to the reaction. These findings support a role for CYP2D15 and CYP3A12 in ITZ biotransformation in canine liver.
Collapse
Affiliation(s)
- Matthew E Tonero
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
| | - Jennifer M Reinhart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
4
|
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y, Liu H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem 2021; 476:1233-1243. [PMID: 33247805 PMCID: PMC7873015 DOI: 10.1007/s11010-020-03985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Vinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|