1
|
Chen L, Wang S, Feng Y, Yu J, Coudyzer W, Van Ongeval C, Geng L, Li Y, Ni Y. Development and characterization of a chick embryo chorioallantoic membrane (CAM) based platform for evaluation of vasoactive medications. Microvasc Res 2022; 142:104372. [PMID: 35483521 DOI: 10.1016/j.mvr.2022.104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
Among various anti-cancer therapies, tumor vascular disrupting agents (VDAs) play a crucial role, for which their off-targeting effects on normal vessels need also to be investigated. The purpose of this study was to set up an in-ovo platform that combines a laser speckle contrast imaging (LSCI) modality with chick embryo chorioallantoic membrane (CAM) to real-time monitor vascular diameters and perfusion without and with intravascular injection. Two eggshell windows for both observation or measurement and injection were opened. Dynamic blood perfusion images and corresponding statistic graphs were acquired by using a LSCI unit on CAMs from embryo date (ED) 9 to ED15. A dedicated fine needle catheter was made for slow intravascular administration over 30 min with simultaneous LSCI acquisition. To verify the connectivity between CAM vessels and the embryonic circulations in the egg, contrast-enhanced 3D micro computed tomography (μCT), 2D angiography and histology were executed. This platform was successfully established to acquire, quantify and demonstrate vascular and hemodynamic information from the CAM. Chick embryos even with air cell opened remained alive from ED9 to ED15. Through collecting LSCI derived CAM vascular diameter and perfusion parameters, ED12 was determined as the best time window for vasoactive drug studies. A reverse correlation between CAM vessel diameter and blood perfusion rate was found (p < 0.002). Intravascular infusion and simultaneous LSCI acquisition for 30 min in ovo proved feasible. Contrast-enhanced angiography and histomorphology could characterize the connectivity between CAM vasculature and embryonic circulation. This LSCI-CAM platform was proved effective for investigating the in-ovo hemodynamics, which paves the road for further preclinical research on vasoactive medications including VDAs.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lei Geng
- School of Life Science, TianGong University, Tianjin, China.
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| |
Collapse
|
2
|
Abstract
Purpose Current clinical measurements for tumor treatment efficiency rely often on changes in tumor volume measured as shrinkage by CT or MRI, which become apparent after multiple lines of treatment and pose a physical and psychological burden on the patient. Detection of therapy-induced cell death in the tumor can be a fast measure for treatment efficiency. However, there are no reliable clinical tools for detection of tumor necrosis. Previously, we studied the necrosis avidity of cyanine-based fluorescent dyes, which suffered long circulation times before tumor necrosis could be imaged due to low hydrophilicity. We now present the application of radiolabeled 800CW, a commercially available cyanine with high hydrophilicity, to image tumor necrosis in a mouse model. Procedures We conjugated 800CW to DOTA via a PEG linker, for labeling with single-photon emission-computed tomography isotope indium-111, yielding [111In]In-DOTA-PEG4-800CW. We then investigated specific [111In]In-DOTA-PEG4-800CW uptake by dead cells in vitro, using both fluorescence and radioactivity as detection modalities. Finally, we investigated [111In]In-DOTA-PEG4-800CW uptake into necrotic tumor regions of a 4T1 breast tumor model in mice. Results We successfully prepared a precursor and developed a reliable procedure for labeling 800CW with indium-111. We detected specific [111In]In-DOTA-PEG4-800CW uptake by dead cells, using both fluorescence and radioactivity. Albeit with a tumor uptake of only 0.37%ID/g at 6 h post injection, we were able to image tumor necrosis with a tumor to background ratio of 7:4. Fluorescence and radioactivity in cryosections from the dissected tumors were colocalized with tumor necrosis, confirmed by TUNEL staining. Conclusions [111In]In-DOTA-PEG4-800CW can be used to image tumor necrosis in vitro and in vivo. Further research will elucidate the application of [111In]In-DOTA-PEG4-800CW or other radiolabeled hydrophilic cyanines for the detection of necrosis caused by chemotherapy or other anti-cancer therapies. This can provide valuable prognostic information in treatment of solid tumors. Electronic supplementary material The online version of this article (10.1007/s11307-020-01511-x) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Han X, Taratula O, Taratula O, Xu K, St Lorenz A, Moses A, Jahangiri Y, Yu G, Farsad K. Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging. Mol Pharm 2020; 17:1538-1545. [PMID: 32212709 DOI: 10.1021/acs.molpharmaceut.9b01238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Necrosis targeting and imaging has significant implications for evaluating tumor growth, therapeutic response, and delivery of therapeutics to perinecrotic tumor zones. Hypericin is a hydrophobic molecule with high necrosis affinity and fluorescence imaging properties. To date, the safe and effective delivery of hypericin to areas of necrosis in vivo remains a challenge because of its incompatible biophysical properties. To address this issue, we have developed a biodegradable nanoparticle (Hyp-NP) for delivery of hypericin to tumors for necrosis targeting and fluorescence imaging. The nanoparticle was developed using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) and hypericin by a modified solvent evaporation technique. The size of Hyp-NP was 19.0 ± 1.8 nm from cryo-TEM and 37.3 ± 0.7 nm from dynamic light-scattering analysis with a polydispersity index of 0.15 ± 0.01. The encapsulation efficiency of hypericin was 95.05% w/w by UV-vis absorption. After storage for 30 days, 91.4% hypericin was retained in Hyp-NP with nearly no change in hydrodynamic size, representing nanoparticle stability. In an ovarian cancer cell line, Hyp-NP demonstrated cellular internalization with intracellular cytoplasmic localization and preserved fluorescence and necrosis affinity. In a mouse subcutaneous tumor model, tumor accumulation was noted at 8 h postinjection, with near-complete clearance at 96 h postinjection. Hyp-NP was shown to be tightly localized within necrotic tumor zones. Histological analysis of harvested organs demonstrated no gross abnormalities, and in vitro, no hemolysis was observed. This proof-of-concept study demonstrates the potential clinical applications of Hyp-NP for necrosis targeting.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning 110001 P. R. China
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning 110001 P. R. China
| | - Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Abraham Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, United States
| | - Guibo Yu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning 110001 P. R. China
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, United States
| |
Collapse
|
4
|
Predicting Clinical Efficacy of Vascular Disrupting Agents in Rodent Models of Primary and Secondary Liver Cancers: An Overview with Imaging-Histopathology Correlation. Diagnostics (Basel) 2020; 10:diagnostics10020078. [PMID: 32024029 PMCID: PMC7168934 DOI: 10.3390/diagnostics10020078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular disrupting agents (VDAs) have entered clinical trials for over 15 years. As the leading VDA, combretastatin A4 phosphate (CA4P) has been evaluated in combination with chemotherapy and molecular targeting agents among patients with ovarian cancer, lung cancer and thyroid cancer, but still remains rarely explored in human liver cancers. To overcome tumor residues and regrowth after CA4P monotherapy, a novel dual targeting pan-anticancer theragnostic strategy, i.e., OncoCiDia, has been developed and shown promise previously in secondary liver tumor models. Animal model of primary liver cancer is time consuming to induce, but of value for more closely mimicking human liver cancers in terms of tumor angiogenesis, histopathological heterogeneity, cellular differentiation, tumor components, cancer progression and therapeutic response. Being increasingly adopted in VDA researches, multiparametric magnetic resonance imaging (MRI) provides imaging biomarkers to reflect in vivo tumor responses to drugs. In this article as a chapter of a doctoral thesis, we overview the construction and clinical relevance of primary and secondary liver cancer models in rodents. Target selection for CA4P therapy assisted by enhanced MRI using hepatobiliary contrast agents (CAs), and therapeutic efficacy evaluated by using MRI with a non-specific contrast agent, dynamic contrast enhanced (DCE) imaging, diffusion weighted imaging (DWI) are also described. We then summarize diverse responses among primary hepatocellular carcinomas (HCCs), secondary liver and pancreatic tumors to CA4P, which appeared to be related to tumor size, vascularity, and cellular differentiation. In general, imaging-histopathology correlation studies allow to conclude that CA4P tends to be more effective in secondary liver tumors and in more differentiated HCCs, but less effective in less differentiated HCCs and implanted pancreatic tumor. Notably, cirrhotic liver may be responsive to CA4P as well. All these could be instructive for future clinical trials of VDAs.
Collapse
|
5
|
He J, Liu C, Li T, Liu Y, Wang S, Zhang J, Chen L, Wang C, Feng Y, Floris G, Wang Z, Zhang X, Zhao L, Li Y, Shao H, Ni Y. Pictorial Imaging-Histopathology Correlation in a Rabbit with Hepatic VX2 Tumor Treated by Transarterial Vascular Disrupting Agent Administration. Int J Med Sci 2020; 17:2269-2275. [PMID: 32922191 PMCID: PMC7484646 DOI: 10.7150/ijms.46165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer vasculature is immature, disorganized and hyperpermeable and can serve as a target for anti-cancer therapies. Vascular disrupting agents (VDAs) are tubulin protein binding and depolymerizing agents that induce rapid tumoral vascular shutdown and subsequent cancer necrosis. However, two clinical problems exist with all VDAs, i.e. 1) incomplete anticancer effect and 2) dose-dependent toxicity. To tackle these problems, in our ongoing research, a novel VDA C118P is applied by transarterial administration of half the intravenous dose in rabbits with implanted VX2 liver tumor to assess its therapeutic efficacy. Nearly complete tumor necrosis was achieved by only a single arterial dose of C118P at 5 mg/kg, which was documented in a representative case by in vivo digital subtraction arteriogram (DSA) and magnetic resonance imaging (MRI), and further confirmed by ex vivo microangiogram and histopathology. This convincing and promising preliminary outcome would warrant further comprehensive studies to explore the potentials of VDAs by transarterial administration either in mono-drug or in combination for management of solid cancers.
Collapse
Affiliation(s)
- Jintong He
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chong Liu
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Tian Li
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yewei Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Chao Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Giuseppe Floris
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Zhiqiang Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Xian Zhang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Haibo Shao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| |
Collapse
|