1
|
OWAKI K, MURAKAMI M, KATO K, HIRATA A, SAKAI H. Reduction of phosphorylated signal transducer and activator of transcription-5 expression in feline mammary carcinoma. J Vet Med Sci 2024; 86:816-823. [PMID: 38777776 PMCID: PMC11251807 DOI: 10.1292/jvms.23-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in various normal physiological cellular processes. Moreover, STATs have been recently identified as novel therapeutic targets for various human tumors. STAT3, STAT5a, and STAT6 have been suggested to be involved in tumorigenesis in human breast cancer. Owing to the similarity between feline mammary carcinomas (FMCs) and human breast cancers, these factors may play an important role in FMCs. However, studies on the expression of STATs in animal tumors are limited. Therefore, in this study, we aimed to characterize the expression of total STAT5 (tSTAT5) and phosphorylated STAT5 (pSTAT5) in FMCs, feline mammary adenomas, non-neoplastic proliferative mammary gland lesions, and normal feline mammary glands using immunohistochemistry. High expression of tSTAT5 was observed in the cytoplasm of all the samples assessed in this study. Moreover, high expression of tSTAT5 was observed in the nucleus; however, its levels varied depending on the lesion. The percentage of pSTAT5-nuclear positive cells varied among normal feline mammary glands (40.1 ± 25.1%), and non-neoplastic lesions, including mammary hyperplasia (43.2 ± 28.6%) and fibroadenomatous changes (18.0 ± 13.6%). Moreover, the percentage of pSTAT5-nuclear-positive cells in feline mammary adenomas was 24.5 ± 19.2%, which was significantly reduced in feline mammary carcinomas (2.4 ± 5.6%), regardless of histopathological subtype. This study suggests that decreased STAT5 activity may be involved in the development and malignant progression of feline mammary carcinomas.
Collapse
Affiliation(s)
- Keishi OWAKI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Mami MURAKAMI
- Laboratory of Veterinary Clinical Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kana KATO
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro HIRATA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hiroki SAKAI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Kapturska KM, Pawlak A. New molecular targets in canine hemangiosarcoma-Comparative review and future of the precision medicine. Vet Comp Oncol 2023; 21:357-377. [PMID: 37308243 DOI: 10.1111/vco.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
Human angiosarcoma and canine hemangiosarcoma reveal similarities not only in their aggressive clinical behaviour, but especially in molecular landscape and genetic alterations involved in tumorigenesis and metastasis formation. Currently, no satisfying treatment that allows for achieving long overall survival or even prolonged time to progression does not exist. Due to the progress that has been made in targeted therapies and precision medicine the basis for a new treatment design is to uncover mutations and their functions as possible targets to provide tailored drugs for individual cases. Whole exome or genome sequencing studies and immunohistochemistry brought in the last few years important discoveries and identified the most common mutations with probably crucial role in this tumour development. Also, despite a lack of mutation in some of the culprit genes, the cancerogenesis cause may be buried in main cellular pathways connected with proteins encoded by those genes and involving, for example, pathological angiogenesis. The aim of this review is to highlight the most promising molecular targets for precision oncology treatment from the veterinary perspective aided by the principles of comparative science. Some of the drugs are only undergoing laboratory in vitro studies and others entered the clinic in the management of other cancer types in humans, but those used in dogs with promising responses have been mentioned as priorities.
Collapse
Affiliation(s)
- Karolina Małgorzata Kapturska
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
- Veterinary Clinic NEOVET s.c. Hildebrand, Jelonek, Michalek-Salt, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
3
|
Vasella M, Gousopoulos E, Guidi M, Storti G, Song SY, Grieb G, Pauli C, Lindenblatt N, Giovanoli P, Kim BS. Targeted therapies and checkpoint inhibitors in sarcoma. QJM 2022; 115:793-805. [PMID: 33486519 DOI: 10.1093/qjmed/hcab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are defined as a group of mesenchymal malignancies with over 100 heterogeneous subtypes. As a rare and difficult to diagnose entity, micrometastasis is already present at the time of diagnosis in many cases. Current treatment practice of sarcomas consists mainly of surgery, (neo)adjuvant chemo- and/or radiotherapy. Although the past decade has shown that particular genetic abnormalities can promote the development of sarcomas, such as translocations, gain-of-function mutations, amplifications or tumor suppressor gene losses, these insights have not led to established alternative treatment strategies so far. Novel therapeutic concepts with immunotherapy at its forefront have experienced some remarkable success in different solid tumors while their impact in sarcoma remains limited. In this review, the most common immunotherapy strategies in sarcomas, such as immune checkpoint inhibitors, targeted therapy and cytokine therapy are concisely discussed. The programmed cell death (PD)-1/PD-1L axis and apoptosis-inducing cytokines, such as TNF-related apoptosis-inducing ligand (TRAIL), have not yielded the same success like in other solid tumors. However, in certain sarcoma subtypes, e.g. liposarcoma or undifferentiated pleomorphic sarcoma, encouraging results in some cases when employing immune checkpoint inhibitors in combination with other treatment options were found. Moreover, newer strategies such as the targeted therapy against the ancient cytokine macrophage migration inhibitory factor (MIF) may represent an interesting approach worth investigation in the future.
Collapse
Affiliation(s)
- M Vasella
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - E Gousopoulos
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - M Guidi
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - G Storti
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome-'Tor Vergata', Via Montepellier, 1, 00133 Rome, Italy
| | - S Y Song
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea
| | - G Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany
- Department of Plastic Surgery, Hand Surgery and Burn Center, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - C Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - N Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - P Giovanoli
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - B-S Kim
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
4
|
OTSUKA N, ISHIMARU K, MURAKAMI M, GOTO M, HIRATA A, SAKAI H. The immunohistochemical detection of peroxiredoxin 1 and 2 in canine spontaneous vascular endothelial tumors. J Vet Med Sci 2022; 84:914-923. [PMID: 35584951 PMCID: PMC9353087 DOI: 10.1292/jvms.22-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin (PRDX) is an antioxidant enzyme family with six isoforms (PRDX1-6). The main function of PRDXs is to decrease cellular oxidative stress by reducing reactive oxygen species, such as hydrogen peroxide, to H2O. Recently, it has been reported that PRDXs are overexpressed in various malignant tumors in humans, and are involved in the development, proliferation, and metastasis of tumors. However, studies on the expression of PRDXs in tumors of animals are limited. Therefore, in the present study, we immunohistochemically investigated the expression of PRDX1 and 2 in spontaneous canine hemangiosarcoma (HSA) and hemangioma (HA), as well as in selected normal tissue and granulation tissue, including newly formed blood vessels. Although there were some exceptions, immunolocalization of PRDX1 and 2 in normal canine tissues was similar to those in humans, rats, or mice. In granulation tissue, angiogenic endothelial cells were strongly positive for PRDX1 and 2, whereas quiescent endothelial cells in mature vessels were negative. Both PRDX1 and 2 were significantly highly expressed in HSA compared to HA. There were no significant differences in the expression of PRDX1 and 2 among the subtypes and primary sites of HSA. These results suggest that PRDX1 and 2 may be involved in the angiogenic phenotypes of endothelial cells in granulation tissue as well as in the behavior in the malignant endothelial tumors.
Collapse
Affiliation(s)
- Narumi OTSUKA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kairi ISHIMARU
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mami MURAKAMI
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Minami GOTO
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro HIRATA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroki SAKAI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
5
|
Kim SH, Seung BJ, Bae MK, Lim HY, Cho SH, Sur JH. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) loss in canine mammary carcinoma. Vet Comp Oncol 2021; 20:207-214. [PMID: 34423555 DOI: 10.1111/vco.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 06/13/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Escaping apoptosis is a hallmark of cancer. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), a central molecule that regulates the extrinsic apoptotic pathway, has been widely investigated in human oncology; however, investigations focusing on the endogenous expression of TRAIL in canine tumours are lacking. Therefore, we aimed to examine the expression of endogenous TRAIL in canine mammary tumours and analysed its correlation with downstream molecules Fas-associated protein with death domain (FADD) and caspase-3, and to the apoptotic index. A total of 147 samples, classified as normal mammary gland (n = 9), mammary adenoma (n = 30), low-grade carcinoma (n = 42) and high-grade carcinoma (n = 66), were included in the immunohistochemical analyses, and 43 samples with sufficient levels of RNA were analysed via RNA in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. In immunohistochemistry, TRAIL protein expression was significantly decreased in high-grade carcinoma compared to those in normal mammary gland and adenoma, with similar downregulation of TRAIL mRNA expression. Also, FADD and caspase-3 expression positively correlated with TRAIL expression. However, the apoptotic index was paradoxically elevated in high-grade tumours. Overall, these results suggest that the loss of TRAIL accompanied by dysregulation of TRAIL-induced extrinsic apoptotic pathway molecules could affect malignant progression of canine mammary tumours.
Collapse
Affiliation(s)
- Soo-Hyeon Kim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Byung-Joon Seung
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Min-Kyung Bae
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ha-Young Lim
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Hee Cho
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Hyang Sur
- Department of Veterinary Pathology, Small Animal Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Goto M, Hirata A, Murakami M, Sakai H. Trimer form of tumor necrosis factor-related apoptosis inducing ligand induces apoptosis in canine cell lines derived from mammary tumors. J Vet Med Sci 2019; 81:1791-1803. [PMID: 31597817 PMCID: PMC6943331 DOI: 10.1292/jvms.19-0469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We evaluated the cytotoxic effect of isoleucine-zipper tumor necrosis factor-related
apoptosis inducing ligand (izTRAIL) against cell lines, B101592, Cha, and C090115, derived
from canine mammary gland tumors. These cells were derived from three dogs diagnosed with
mammary adenoma or carcinoma. All three cells were positive for vimentin, while B101592
and C090115 were positive for cytokeratin (CK) AE1/AE3 and CK CAM5.2. Treatment with
izTRAIL decreased the viability of the three cell lines. The proportion of annexin
V+/propidium iodide- cells increased in all three cell lines after treatment with izTRAIL.
Additionally, cell cycle analysis revealed that izTRAIL treatment increased the number of
cells in sub-G1 phase. Moreover, izTRAIL treatment activated caspase-8 and caspase-3 and
enhanced the levels of cleaved poly (ADP-ribose) polymerase. The cytotoxic effect of
izTRAIL was mitigated upon co-treatment with caspase-8 or caspase-3 inhibitor. These
results indicated that izTRAIL induces apoptosis in cell lines derived from canine mammary
tumor, which was also previously reported in canine hemangiosarcoma cell lines. This
suggested that canine tumor cells have conserved TRAIL receptors. This study will provide
the basis for further studies on TRAIL receptors and TRAIL-related molecules.
Collapse
Affiliation(s)
- Minami Goto
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mami Murakami
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|