1
|
Nakanishi S, Hasegawa T, Maeno K, Motoyama A, Denda M. OBP2A regulates epidermal barrier function and protects against cytotoxic small hydrophobic molecules. iScience 2024; 27:111093. [PMID: 39502293 PMCID: PMC11536036 DOI: 10.1016/j.isci.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
The skin is constantly exposed to environmental sensory stimuli, which may include harmful volatiles and small hydrophobic molecules. However, the skin's protective mechanism against the latter agents is unclear. Here, we demonstrate that odorant binding protein 2A (OBP2A) protects epidermal keratinocytes against cytotoxic small hydrophobic molecules. OBP2A is mainly expressed in human epidermal keratinocytes. Cellular resistance to cytotoxic aldehyde and lipids was reduced in keratinocytes when OBP2A was silenced. Furthermore, silencing of OBP2A in a three-dimensional epidermal equivalent model resulted in impairment of epidermal barrier function. Inhibition of OBP2A caused disruption of keratinocyte lipid metabolism and induced endoplasmic reticulum stress. OBP2A expression was markedly decreased in the epidermis of atopic dermatitis lesional skin. In addition, interleukin-13 suppressed the expression of OBP2A in keratinocytes. Overall, our findings suggest that OBP2A regulates epidermal barrier function and contributes to protection of the skin against harmful small hydrophobic molecules.
Collapse
Affiliation(s)
| | | | | | - Akira Motoyama
- Shiseido Global Innovation Center, Yokohama 220-0011, Japan
| | - Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo 164-8525, Japan
| |
Collapse
|
2
|
Santoro D, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Hensel P, Pucheu-Haston C. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol 2024; 35:5-14. [PMID: 37990608 DOI: 10.1111/vde.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Canine atopic dermatitis (AD) is a complex inflammatory skin disease associated with cutaneous microbiome, immunological and skin barrier alterations. This review summarises the current evidence on skin barrier defects and on cutaneous microbiome dysfunction in canine AD. OBJECTIVE To this aim, online citation databases, abstracts and proceedings from international meetings on skin barrier and cutaneous microbiome published between 2015 and 2023 were reviewed. RESULTS Since the last update on the pathogenesis of canine AD, published by the International Committee on Allergic Diseases of Animals in 2015, 49 articles have been published on skin barrier function, cutaneous/aural innate immunity and the cutaneous/aural microbiome in atopic dogs. Skin barrier dysfunction and cutaneous microbial dysbiosis are essential players in the pathogenesis of canine AD. It is still unclear if such alterations are primary or secondary to cutaneous inflammation, although some evidence supports their primary involvement in the pathogenesis of canine AD. CONCLUSION AND CLINICAL RELEVANCE Although many studies have been published since 2015, the understanding of the cutaneous host-microbe interaction is still unclear, as is the role that cutaneous dysbiosis plays in the development and/or worsening of canine AD. More studies are needed aiming to design new therapeutic approaches to restore the skin barrier, to increase and optimise the cutaneous natural defences, and to rebalance the cutaneous microbiome.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Magnifico I, Perna A, Cutuli MA, Medoro A, Pietrangelo L, Guarnieri A, Foderà E, Passarella D, Venditti N, Vergalito F, Petronio Petronio G, Di Marco R. A Wall Fragment of Cutibacterium acnes Preserves Junctional Integrity Altered by Staphylococcus aureus in an Ex Vivo Porcine Skin Model. Pharmaceutics 2023; 15:pharmaceutics15041224. [PMID: 37111709 PMCID: PMC10145065 DOI: 10.3390/pharmaceutics15041224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background alteration of the skin microbiota, dysbiosis, causes skin barrier impairment resulting in disease development. Staphylococcus aureus, the main pathogen associated with dysbiosis, secretes several virulence factors, including α-toxin that damages tight junctions and compromises the integrity of the skin barrier. The use of members of the resident microbiota to restore the skin barrier, bacteriotherapy, represents a safe treatment for skin conditions among innovative options. The aim of this study is the evaluation of a wall fragment derived from a patented strain of Cutibacterium acnes DSM28251 (c40) alone and conjugated to a mucopolysaccharide carrier (HAc40) in counteracting S. aureus pathogenic action on two tight junction proteins (Claudin-1 and ZO-1) in an ex vivo porcine skin infection model. Methods: skin biopsies were infected with live S. aureus strains ATCC29213 and DSM20491. Tissue was pre-incubated or co-incubated with c40 and HAc40. (3) Results: c40 and HAc40 prevent and counteract Claudin-1 and Zo-1 damage (4) Conclusions: c40 and the functional ingredient HAc40 represent a potential non-pharmacological treatment of skin diseases associated with cutaneous dysbiosis of S. aureus. These findings offer numerous avenues for new research.
Collapse
Affiliation(s)
- Irene Magnifico
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Angelica Perna
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Alessando Medoro
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Emanuele Foderà
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science "V. Tiberio", Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
4
|
Marsella R, Ahrens K, Wilkes R. Differences in Behavior between Normal and Atopic Keratinocytes in Culture: Pilot Studies. Vet Sci 2022; 9:vetsci9070329. [PMID: 35878346 PMCID: PMC9319359 DOI: 10.3390/vetsci9070329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin barrier dysfunction is important in atopic dermatitis and can be secondary to inflammation. Observation of keratinocytes in culture may show intrinsic differences. TransEpithelial Electrical Resistance (TEER) measures epithelial permeability. We cultured normal and atopic keratinocytes and found that TEER of atopic keratinocytes was significantly lower (p < 0.0001) than that of normals. Atopic keratinocytes grew upwards, first creating isolated dome-like structures and later horizontally into a monolayer. At time of confluence (D0), atopic keratinocytes were more differentiated, with higher filaggrin gene expression than normals. No differences existed between groups for TJ proteins (claudin, occludin, and Zonula Occludens-1) on D0 and D6. On D6, claudin and occludin were higher than D0, in normal (p = 0.0296 and p = 0.0011) and atopic keratinocytes (p = 0.0348 and 0.0491). Immunofluorescent staining showed nuclear location of filaggrin on D0 and cytoplasmic on D6. ANOVA showed increased cell size from D0 to D6 in both groups (effect of time, p = 0.0076) but no differences between groups. Significant subject effect (p = 0.0022) was found, indicating that cell size was subject-dependent but not disease-dependent. No difference for continuity for TJ protein existed between groups. These observations suggest that decreased TEER in atopics is not linked to TJ differences but is possibly linked to different growth behavior.
Collapse
|
5
|
Marsella R, Wilkes R, Ahrens K. Canine Epidermal Keratinocytes (CPEK) Grown in Monolayer Are Not Representative of Normal Canine Keratinocytes for Permeability Studies: Pilot Studies. Vet Sci 2022; 9:vetsci9010025. [PMID: 35051109 PMCID: PMC8780127 DOI: 10.3390/vetsci9010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Canine progenitor epidermal keratinocytes (CPEK) are used as canine keratinocyte cell line. Their suitability for skin barrier studies is unknown. Measurement of transepithelial electric resistance (TEER) evaluates epithelial permeability. We compared TEER and tight junction (TJ) expression in CPEKs and normal keratinocytes (NK) harvested from biopsies of normal dogs. CPEKs and NK were grown until confluence (D0) and for 13 additional days. Slides were fixed on D0 and stained with ZO-1 and claudin-1 antibodies. Five images/antibody were taken, randomized and evaluated blindly by three investigators for intensity, staining location, granularity, and continuousness. Cell size and variability were evaluated. TEER increased overtime to 2000 Ohms/cm in NK, while remained around 100–150 Ohms/cm in CPEK. ANOVA showed significant effect of time (p < 0.0001), group (p < 0.0001) and group x time interaction (p < 0.0001) for TEER. Size of CPEKs was significantly (p < 0.0001) smaller and less variable (p = 0.0078) than NK. Intensity of claudin-1 staining was greater in CPEKs (p < 0.0001) while granularity was less in CPEKs (p = 0.0012). For ZO-1, cytoplasmic staining was greater in CPEK (p < 0.0001) while membrane continuousness of staining was greater in NK (p = 0.0002). We conclude that CPEKs grown in monolayer are not representative of NK for permeability studies.
Collapse
|
6
|
Investigation on the Effect of Dose, Frequency and Duration of Allergen Exposure on Development of Staphylococcal Infections in a Chronic Model of Canine Atopic Dermatitis. Vet Sci 2021; 9:vetsci9010008. [PMID: 35051092 PMCID: PMC8780866 DOI: 10.3390/vetsci9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Canine atopic dermatitis (CAD) is chronic and frequently complicated by Staphylococcal infections. Understanding the role of allergen dose, frequency and duration of exposure in triggering infections requires a model. Most models elicit acute inflammation and do not mimic real-life disease. Here we describe the effects of allergen exposures on development of infections in a model of chronic CAD. Diagnosis of pyoderma was based on clinical signs and consistent cytology. Study 1 evaluated the role of duration of exposure keeping the daily dose constant (25 mg/day). The one-week protocol involved three exposures, 3 days in a row. The one-month protocol involved twice-weekly challenges for 4 weeks. The three-month protocol involved twice-weekly challenges for 12 weeks. Study 2 evaluated different daily doses while keeping constant the total weekly dose (25 mg) and duration (3 weeks). Low-dose used 5 mg/day for 5 days, each week. High-dose used 12.5 mg/day twice-weekly. In Study 1, the longer the exposure, the more dogs developed pyoderma (6/9 in the three-month study, 2/9 in the one-month and 0 in the one-week). In Study 2, low-dose daily exposure caused more infections (5/8) than high-dose infrequent exposure (0/8). It is concluded that low-grade, daily exposure for a long time is most relevant for development of staphylococcal infections.
Collapse
|
7
|
Atopic Dermatitis in Domestic Animals: What Our Current Understanding Is and How This Applies to Clinical Practice. Vet Sci 2021; 8:vetsci8070124. [PMID: 34357916 PMCID: PMC8310319 DOI: 10.3390/vetsci8070124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis is a clinical syndrome that affects both people and animals. Dogs closely mimic the complexity of the human skin disease, and much progress has been made in recent years in terms of our understanding of the role of skin impairment and the identification of new treatments. Cats and horses also develop atopic syndromes which include both cutaneous and respiratory signs, yet studies in these species are lagging. It is now recognized that atopic dermatitis is not a single disease but a multifaceted clinical syndrome with different pathways in various subgroups of patients. Appreciating this complexity is clinically relevant as we develop more targeted treatments which may work well in some patients but not in others. Different phenotypes of atopic dermatitis have been described in dogs, and it is possible that phenotypes related to breed and age may exist in other animals similar to how they are described in people. The awareness of different mechanisms of disease leads to the desire to correlate different phenotypes with specific biomarkers and responses to treatment. In this review, the current understanding and updated information on atopic syndrome in animals are described, highlighting opportunities for further studies in the future.
Collapse
|
8
|
Marsella R. Advances in our understanding of canine atopic dermatitis. Vet Dermatol 2021; 32:547-e151. [PMID: 33891338 DOI: 10.1111/vde.12965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Canine atopic dermatitis (cAD) is a genetically inherited clinical syndrome that encompasses a diversity of mechanisms and can have a variety of triggers. Development of clinical disease is the result of genetic factors and environmental conditions, which shape the resulting immunological response. Clinical disease becomes evident once a threshold of inflammatory response is achieved. Skin barrier impairment plays a role in promoting cutaneous dysbiosis and increased allergen penetration. Keratinocytes shape the response of dendritic cells and subsequent lymphocytic response. Thymic stromal lymphopoietin is one of the links between the damaged skin barrier and the modulation of a T-helper (Th)2 response. It is still unclear whether mutations in skin barrier genes exist in atopic dogs, as they do in humans, or whether the observed alterations are purely secondary to inflammation. A dysregulated immune response with increased Th2, Th17 and CD4+ CD25+ regulatory T cells has been reported. A variety of cytokines [interleukin(IL)-31, IL-34, Macrophage migration inhibitory factor] are proposed as potential biomarkers and treatment targets because they are increased in the serum of atopic dogs when compared to controls, although a correlation between serum levels of these factors and severity of disease is not always present. The main issue with many published studies is that atopic dogs are always only compared to normal controls. Thus, it is unclear whether the changes that we find are truly a signature of cAD or merely a manifestation of nonspecific broad inflammatory responses. Studies considering comparison with other inflammatory diseases different from cAD are urgently needed to correctly identify what is specific to this complicated syndrome.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Nuttall TJ, Marsella R, Rosenbaum MR, Gonzales AJ, Fadok VA. Update on pathogenesis, diagnosis, and treatment of atopic dermatitis in dogs. J Am Vet Med Assoc 2020; 254:1291-1300. [PMID: 31067173 DOI: 10.2460/javma.254.11.1291] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Improved understanding of the pathogenesis of atopic dermatitis in dogs has led to more effective treatment plans, including skin barrier repair and new targeted treatments for management of allergy-associated itch and inflammation. The intent of this review article is to provide an update on the etiologic rationale behind current recommendations that emphasize a multimodal approach for the management of atopic dermatitis in dogs. Increasing knowledge of this complex disease process will help direct future treatment options.
Collapse
|
10
|
Gedon NKY, Mueller RS. Atopic dermatitis in cats and dogs: a difficult disease for animals and owners. Clin Transl Allergy 2018; 8:41. [PMID: 30323921 PMCID: PMC6172809 DOI: 10.1186/s13601-018-0228-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review article is to give an overview of atopic dermatitis in companion animals and of recent developments including knowledge on immunological background, novel treatment options and difficulties in disease management. The prevalence of hypersensitivities seems to be increasing. The pathogenetic mechanisms are not fully understood, yet multiple gene abnormalities and altered immunological processes are involved. In dogs and cats, the diagnosis of atopic dermatitis is based on history, clinical examination and exclusion of other differential diagnoses. Intradermal testing or testing for serum allergen-specific Immunoglobulin E is only used to identify allergens for inclusion in the extract for allergen immunotherapy. Symptomatic therapy includes glucocorticoids, ciclosporin, essential fatty acids and antihistamines. A selective janus kinase 1 inhibitor and a caninized monoclonal interleukin-31 antibody are the newest options for symptomatic treatment, although longterm effects still need to be assessed. The chronic and often severe nature of the disease, the costly diagnostic workup, frequent clinical flares and lifelong treatment are challenging for owners, pets and veterinarians. Patience and excellent communication skills are needed to achieve a good owner compliance and satisfactory clinical outcome for the animal.
Collapse
Affiliation(s)
- Natalie Katharina Yvonne Gedon
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| | - Ralf Steffen Mueller
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| |
Collapse
|
11
|
Pin D, Pendaries V, Keita Alassane S, Froment C, Amalric N, Cadiergues MC, Serre G, Haftek M, Vidémont E, Simon M. Refined Immunochemical Characterization in Healthy Dog Skin of the Epidermal Cornification Proteins, Filaggrin, and Corneodesmosin. J Histochem Cytochem 2018; 67:85-97. [PMID: 30199656 DOI: 10.1369/0022155418798807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Filaggrin (FLG) and corneodesmosin (CDSN) are two key proteins of the human epidermis. FLG loss-of-function mutations are the strongest genetic risk factors for human atopic dermatitis. Studies of the epidermal distribution of canine FLG and CDSN are limited. Our aim was to better characterize the distribution of FLG and CDSN in canine skin. Using immunohistochemistry on beagle skin, we screened a series of monoclonal antibodies (mAbs) specific for human FLG and CDSN. The cross-reactive mAbs were further used using immunoelectron microscopy and Western blotting. The structure of canine CDSN and FLG was determined using publicly available databases. In the epidermis, four anti-FLG mAbs stained keratohyalin granules in the granular keratinocytes and corneocyte matrix of the lower cornified layer. In urea-extracts of dog epidermis, several bands corresponding to proFLG and FLG monomers were detected. One anti-CDSN mAb stained the cytoplasm of granular keratinocytes and cells of both the inner root sheath and medulla of hair follicles. Dog CDSN was located in lamellar bodies, in the extracellular parts of desmosomes and in corneodesmosomes. A protein of 52 kDa was immunodetected. Genomic DNA analysis revealed that the amino acid sequence and structure of canine and human CDSN were highly similar.
Collapse
Affiliation(s)
- Didier Pin
- University of Lyon, VetAgro Sup, UP Interaction Cellules Environnement, Marcy l'Etoile, France
| | | | | | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale, University of Toulouse, CNRS, UPS, Toulouse, France
| | | | - Marie-Christine Cadiergues
- UDEAR, INSERM, University of Toulouse, Toulouse, France.,Department of Dermatology, Department of Clinical Sciences, National Veterinary School of Toulouse, Toulouse, France
| | - Guy Serre
- UDEAR, INSERM, University of Toulouse, Toulouse, France
| | | | - Emilie Vidémont
- University of Lyon, VetAgro Sup, UP Interaction Cellules Environnement, Marcy l'Etoile, France
| | - Michel Simon
- UDEAR, INSERM, University of Toulouse, Toulouse, France
| |
Collapse
|
12
|
Teramoto K, Asahina R, Nishida H, Kamishina H, Maeda S. Expression of ZO-1 and claudin-1 in a 3D epidermal equivalent using canine progenitor epidermal keratinocytes. Vet Dermatol 2018; 29:288. [PMID: 29785754 DOI: 10.1111/vde.12655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies indicate that tight junctions are involved in the pathogenesis of canine atopic dermatitis (cAD). An in vitro skin model is needed to elucidate the specific role of tight junctions in cAD. A 3D epidermal equivalent model using canine progenitor epidermal keratinocytes (CPEK) has been established; the expression of tight junctions within this model is uncharacterized. HYPOTHESIS/OBJECTIVES To investigate the expression of tight junctions in the 3D epidermal equivalent. ANIMALS Two normal laboratory beagle dogs served as donors of full-thickness skin biopsy samples for comparison to the in vitro model. METHODS Immunohistochemical techniques were employed to investigate the expression of tight junctions including zonula occludens (ZO)-1 and claudin-1 in normal canine skin, and in the CPEK 3D epidermal equivalent. RESULTS Results demonstrated the expression of ZO-1 and claudin-1 in the CPEK 3D epidermal equivalent, with staining patterns that were similar to those in normal canine skin. CONCLUSIONS AND CLINICAL IMPORTANCE The CPEK 3D epidermal equivalent has the potential to be a suitable in vitro research tool for clarifying the specific role of tight junctions in cAD.
Collapse
Affiliation(s)
- Keiji Teramoto
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ryota Asahina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hidetaka Nishida
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
13
|
Malik K, Ungar B, Garcet S, Dutt R, Dickstein D, Zheng X, Xu H, Estrada YD, Suárez-Fariñas M, Shemer A, Krueger JG, Guttman-Yassky E. Dust mite induces multiple polar T cell axes in human skin. Clin Exp Allergy 2017; 47:1648-1660. [DOI: 10.1111/cea.13040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022]
Affiliation(s)
- K. Malik
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
| | - B. Ungar
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
| | - S. Garcet
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
| | - R. Dutt
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - D. Dickstein
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - X. Zheng
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
| | - H. Xu
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Y. D. Estrada
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - M. Suárez-Fariñas
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
- Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai; New York NY USA
- Department of Genetics and Genomics Science; Icahn School of Medicine at Mount Sinai; New York NY USA
- Icahn Institute for Genomics and Multiscale Biology; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - A. Shemer
- The Department of Dermatology; Tel-Hashomer; Tel-Aviv Israel
| | - J. G. Krueger
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
| | - E. Guttman-Yassky
- Department of Dermatology; Icahn School of Medicine at Mount Sinai; New York NY USA
- Laboratory for Investigative Dermatology; The Rockefeller University; New York NY USA
- Department of Genetics and Genomics Science; Icahn School of Medicine at Mount Sinai; New York NY USA
- The Immunology Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
14
|
Ardesjö-Lundgren B, Tengvall K, Bergvall K, Farias FHG, Wang L, Hedhammar Å, Lindblad-Toh K, Andersson G. Comparison of cellular location and expression of Plakophilin-2 in epidermal cells from nonlesional atopic skin and healthy skin in German shepherd dogs. Vet Dermatol 2017; 28:377-e88. [PMID: 28386956 PMCID: PMC5516137 DOI: 10.1111/vde.12441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
Background Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease caused by interactions between genetic and environmental factors. Previously, a genome‐wide significant risk locus on canine chromosome 27 for CAD was identified in German shepherd dogs (GSDs) and Plakophilin‐2 (PKP2) was defined as the top candidate gene. PKP2 constitutes a crucial component of desmosomes and also is important in signalling, metabolic and transcriptional activities. Objectives The main objective was to evaluate the role of PKP2 in CAD by investigating PKP2 expression and desmosome structure in nonlesional skin from CAD‐affected (carrying the top GWAS SNP risk allele) and healthy GSDs. We also aimed at defining the cell types in the skin that express PKP2 and its intracellular location. Animals/Methods Skin biopsies were collected from nine CAD‐affected and five control GSDs. The biopsies were frozen for immunofluorescence and fixed for electron microscopy immunolabelling and morphology. Results We observed the novel finding of PKP2 expression in dendritic cells and T cells in dog skin. Moreover, we detected that PKP2 was more evenly expressed within keratinocytes compared to its desmosomal binding‐partner plakoglobin. PKP2 protein was located in the nucleus and on keratin filaments attached to desmosomes. No difference in PKP2 abundance between CAD cases and controls was observed. Conclusion Plakophilin‐2 protein in dog skin is expressed in both epithelial and immune cells; based on its subcellular location its functional role is implicated in both nuclear and structural processes.
Collapse
Affiliation(s)
- Brita Ardesjö-Lundgren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-75007, Uppsala, Sweden
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Neuroimmunology Unit, Centrum for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, 17176, Stockholm, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| | - Fabiana H G Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-75007, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, SE-75123, Uppsala, Sweden.,Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, SE-75007, Uppsala, Sweden
| |
Collapse
|
15
|
Bäsler K, Brandner JM. Tight junctions in skin inflammation. Pflugers Arch 2016; 469:3-14. [DOI: 10.1007/s00424-016-1903-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
16
|
Asad S, Winge M, Wahlgren CF, Bilcha K, Nordenskjöld M, Taylan F, Bradley M. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol 2016; 30:1939-1941. [DOI: 10.1111/jdv.13806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- S. Asad
- Department of Molecular Medicine & Surgery and the Center for Molecular Medicine; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
| | - M.C.G. Winge
- Program in Epithelial Biology; Stanford University School of Medicine; Stanford CA USA
| | - C.-F. Wahlgren
- Dermatology Unit; Department of Medicine Solna; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
| | - K.D. Bilcha
- Department of Dermatovenereology; Faculty of Medicine; Gondar University; Gondar Ethiopia
| | - M. Nordenskjöld
- Department of Molecular Medicine & Surgery and the Center for Molecular Medicine; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
| | - F. Taylan
- Department of Molecular Medicine & Surgery and the Center for Molecular Medicine; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
| | - M. Bradley
- Department of Molecular Medicine & Surgery and the Center for Molecular Medicine; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
- Dermatology Unit; Department of Medicine Solna; Karolinska Institutet; Karolinska University Hospital Solna; Stockholm Sweden
| |
Collapse
|
17
|
|
18
|
Kim HJ, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol 2015; 27:40-e11. [DOI: 10.1111/vde.12276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Ha-Jung Kim
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| | - Megan Cronin
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| | - Vassi Papastavros
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| | - Rosanna Marsella
- Department of Small Animal Clinical Sciences; College of Veterinary Medicine; University of Florida; 2015 SW 16th Avenue Gainesville FL 32615 USA
| |
Collapse
|
19
|
Saridomichelakis MN, Olivry T. An update on the treatment of canine atopic dermatitis. Vet J 2015; 207:29-37. [PMID: 26586215 DOI: 10.1016/j.tvjl.2015.09.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/24/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
Canine atopic dermatitis is a common skin disease seen in veterinary clinical practice. Several factors appear to contribute to the cutaneous inflammation and pruritus. The therapeutic strategy should focus on control of those factors that can be identified and for which interventional measures are feasible; these include ectoparasites, bacterial/fungal infection and dietary hypersensitivity. Ectoparasites, particularly fleas, are not the cause of atopic dermatitis, but they are a confounding factor, which can exacerbate pruritus, and preventative measures are therefore indicated. Bacterial and yeast infections are frequently associated with atopic dermatitis and initial systemic and/or topical therapy should be considered, followed by regular topical treatment for preventing relapse. Concurrent dietary hypersensitivity should be investigated by undertaking an elimination/provocation trial, followed by feeding of a hypoallergenic diet where appropriate. Depending on the severity of the clinical signs of atopic dermatitis and the willingness and expectations of owners, symptomatic treatment and/or specific interventional therapy for environmental allergy (allergen avoidance, allergen-specific immunotherapy) may be implemented. Symptomatic treatment includes use of glucocorticoids (systemically or topically), ciclosporin and oclacitinib. Other treatment modalities of lower or less proven efficacy include antihistamines, dextromethorphan, fatty acids, feline interferon-omega, misoprostol, pentoxifylline, specific serotonin re-uptake inhibitors and tricyclic antidepressant drugs. The therapeutic approach should be reviewed at regular intervals and tailored to the individual's needs. A successful long-term outcome can usually be achieved by combining the various treatment approaches in a way that maximises their benefits and minimises their drawbacks.
Collapse
Affiliation(s)
- Manolis N Saridomichelakis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Trikalon Str. 224, Karditsa GR-43100, Greece.
| | - Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|