1
|
Messina L, Bruno F, Licata P, Paola DD, Franco G, Marino Y, Peritore AF, Cuzzocrea S, Gugliandolo E, Crupi R. Snail Mucus Filtrate Reduces Inflammation in Canine Progenitor Epidermal Keratinocytes (CPEK). Animals (Basel) 2022; 12:ani12141848. [PMID: 35883395 PMCID: PMC9311558 DOI: 10.3390/ani12141848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Canine atopic dermatitis (cAD) is a clinical syndrome characterized by inflammatory and allergic manifestations. Recent studies have demonstrated that cAD has many common characteristics with human AD and this assertion is derived from the assumption that domestic dogs share the environment with their owners. Several therapeutic approaches can be used in the management of cAD; in our research, we used the mucus secreted by Helix aspersa Muller. To clarify the development of cAD, we employed cell lines of canine epidermal keratinocytes (CPEK). Our results highlight the anti-inflammatory capacity of mucus in reducing the inflammatory process produced during cAD. Abstract Atopic dermatitis (AD) is an inflammatory and allergic disease, whose multifactorial etiopathogenesis is the consequence of the link between the genetic, immunological and environmental components. The complexity and difficulty in understanding the causes that trigger or exacerbate this pathology makes it difficult, once diagnosed, to proceed with a targeted and effective therapeutic process. Today, the new frontiers of research look to natural and innovative treatments to counteract the different manifestations of dermatitis. From this point of view, the mucus secreted by Helix aspersa Muller has proven, since ancient times, to be able to neutralize skin diseases. To study canine atopic dermatitis (cAD), we used cell lines of canine epidermal keratinocytes (CPEK) that are optimal to understand the biological reactivity of keratinocytes in vitro. The data obtained from our study demonstrate the anti-inflammatory capacity of snail secretion filtrate (SSF) in counteracting the production of proinflammatory cytokines produced during cAD, highlighting the opportunities for further studies to be able to identify new, natural and safe treatments for cAD and to open new frontiers for veterinarians and owners.
Collapse
Affiliation(s)
- Laura Messina
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (L.M.); (F.B.); (P.L.); (R.C.)
| | - Fabio Bruno
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (L.M.); (F.B.); (P.L.); (R.C.)
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (L.M.); (F.B.); (P.L.); (R.C.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (G.F.); (Y.M.); (A.F.P.); (S.C.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (G.F.); (Y.M.); (A.F.P.); (S.C.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (G.F.); (Y.M.); (A.F.P.); (S.C.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (G.F.); (Y.M.); (A.F.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy; (D.D.P.); (G.F.); (Y.M.); (A.F.P.); (S.C.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (L.M.); (F.B.); (P.L.); (R.C.)
- Correspondence:
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy; (L.M.); (F.B.); (P.L.); (R.C.)
| |
Collapse
|
2
|
Local and Systemic Changes in Lipid Profile as Potential Biomarkers for Canine Atopic Dermatitis. Metabolites 2021; 11:metabo11100670. [PMID: 34677385 PMCID: PMC8541266 DOI: 10.3390/metabo11100670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lipids play a critical role in the skin as components of the epidermal barrier and as signaling and antimicrobial molecules. Atopic dermatitis in dogs is associated with changes in the lipid composition of the skin, but whether these precede or follow the onset of dermatitis is unclear. We applied rapid lipid-profiling mass spectrometry to skin and blood of 30 control and 30 atopic dogs. Marked differences in lipid profiles were observed between control, nonlesional, and lesional skin. The lipid composition of blood from control and atopic dogs was different, indicating systemic changes in lipid metabolism. Female and male dogs differed in the degree of changes in the skin and blood lipid profiles. Treatment with oclacitinib or lokivetmab ameliorated the skin condition and caused changes in skin and blood lipids. A set of lipid features of the skin was selected as a biomarker that classified samples as control or atopic dermatitis with 95% accuracy, whereas blood lipids discriminated between control and atopic dogs with 90% accuracy. These data suggest that canine atopic dermatitis is a systemic disease and support the use of rapid lipid profiling to identify novel biomarkers.
Collapse
|
3
|
Massimini M, Dalle Vedove E, Bachetti B, Di Pierro F, Ribecco C, D'Addario C, Pucci M. Polyphenols and Cannabidiol Modulate Transcriptional Regulation of Th1/Th2 Inflammatory Genes Related to Canine Atopic Dermatitis. Front Vet Sci 2021; 8:606197. [PMID: 33763461 PMCID: PMC7982812 DOI: 10.3389/fvets.2021.606197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Canine atopic dermatitis (AD) is a multifactorial allergic disease associated with immune and abnormal skin barrier dysfunction and it is one of the primary causes of pruritus. Using a novel in vitro model of AD, here we tried to revert the alteration of transcriptional regulation of AD canine key genes testing a nutraceutical mixture containing flavonoids, stilbene, and cannabinoids, which are already well-known for their applications within dermatology diseases. The nutraceutical mixture induced in inflamed cells a significant downregulation (p < 0.05) of the gene expression of ccl2, ccl17, and tslp in keratinocytes and of ccl2, ccl17, and il31ra in monocytes. Consistent with the observed alterations of tslp, ccl2, ccl17, and il31ra messenger RNA (mRNA) levels, a significant increase (p < 0.05) of DNA methylation at specific CpG sites on the gene regulatory regions was found. These results lay the foundation for the use of these natural bioactives in veterinary medicine and provide a model for deeper understanding of their mechanisms of action, with potential translation to human research.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Loeffler A. Editors' Note. Vet Dermatol 2019; 30:448. [PMID: 31489732 DOI: 10.1111/vde.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|