1
|
Song J, Liu Z, Zhang Q, Liu Y, Chen Y. Phage Engineering for Targeted Multidrug-Resistant Escherichia coli. Int J Mol Sci 2023; 24:ijms24032459. [PMID: 36768781 PMCID: PMC10004113 DOI: 10.3390/ijms24032459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The lytic bacteriophages have potential application value in the treatment of bacterial infections. However, the narrow host spectrum of these phages limits their range of clinical application. Here, we demonstrate the use of scarless Cas9-assisted recombination (no-SCAR) gene-editing technology to regulate phage-host range. We used phage PHB20 as the scaffold to create agents targeting different multidrug-resistant Escherichia coli by replacing its phage tail fiber gene (ORF40). The engineered phages were polyvalent and capable of infecting both the original host bacteria and new targets. Phage-tail fiber genes can be amplified by PCR to construct a recombinant phage PHB20 library that can deal with multidrug-resistant bacteria in the future. Our results provide a better understanding of phage-host interactions, and we describe new anti-bacterial editing methods.
Collapse
Affiliation(s)
| | | | | | - Yuqing Liu
- Correspondence: ; Tel./Fax: +86-531-66655093
| | | |
Collapse
|
2
|
Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms 2022; 10:microorganisms10071324. [PMID: 35889048 PMCID: PMC9324367 DOI: 10.3390/microorganisms10071324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health issue and antibiotic agents have lagged behind the rise in bacterial resistance. We are searching for a new method to combat AMR and phages are viruses that can effectively fight bacterial infections, which have renewed interest as antibiotic alternatives with their specificity. Large phage products have been produced in recent years to fight AMR. Using the “one health” approach, this review summarizes the phage products used in plant, food, animal, and human health. In addition, the advantages and disadvantages and future perspectives for the development of phage therapy as an antibiotic alternative to combat AMR are also discussed in this review.
Collapse
Affiliation(s)
- Yuanling Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhao Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|