1
|
Bakır A, Nett-Mettler CS, Ulutas B. Therapeutic efficacy of cold atmospheric plasma in four golden retrievers with acute otitis externa. Vet Dermatol 2024. [PMID: 39140276 DOI: 10.1111/vde.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) is a new therapeutic tool used to treat various skin diseases in humans and animals. OBJECTIVE To evaluate the effect of CAP in the treatment of canine acute otitis externa (AOE). ANIMALS Four client-owned golden retriever dogs with bilateral AOE. METHODS AND MATERIALS After cleaning with a commercial ear cleanser, right ears (STANDARD group) were treated with an antibiotic/antifungal/corticosteroid combination and left ears (CAP group) were treated with CAP every three days for a total of four treatments. Cytological score and otitis index score (OTIS)3 were recorded for each ear on Day (D)0, D10 and D15. At D10 and D15, owners and investigators recorded an overall assessment. RESULTS In both groups, OTIS3 and cytological score decreased over the study period. The overall assessment scale ranged from moderate to excellent in both groups. CONCLUSIONS AND CLINICAL RELEVANCE Cold atmospheric plasma treatment showed equal therapeutic effect compared with a commercial topical anti-inflammatory and antimicrobial ear treatment.
Collapse
Affiliation(s)
- Alanur Bakır
- Department of Internal Medicine, Veterinary Faculty, Adnan Menderes University, Aydın, Turkey
| | | | - Bulent Ulutas
- Department of Internal Medicine, Veterinary Faculty, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
2
|
Stefanetti V, Passamonti F, Rampacci E. Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet Sci 2024; 11:311. [PMID: 39057995 PMCID: PMC11281426 DOI: 10.3390/vetsci11070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of dermato-pathogenic Staphylococcus spp., particularly Staphylococcus pseudintermedius, in companion animals presents significant challenges due to rising antimicrobial resistance. This review explores innovative strategies to combat these infections. We examined novel antimicrobials and the repurposing of existing drugs to enhance their efficacy against resistant strains. Additionally, we evaluate the potential of natural products, nanomaterials, and skin antiseptics as alternative treatments. The review also investigates the use of antimicrobial peptides and bacteriophages, highlighting their targeted action against staphylococcal pathogens. Furthermore, the role of adjuvants in antibiotic treatments, such as antimicrobial resistance breakers, is discussed, emphasizing their ability to enhance therapeutic outcomes. Our analysis underscores the importance of a multifaceted approach in developing effective antimicrobial strategies for companion animals, aiming to mitigate resistance and improve clinical management of staphylococcal skin infections.
Collapse
Affiliation(s)
- Valentina Stefanetti
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
3
|
Secker B, Shaw S, Atterbury RJ. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023; 11:2650. [PMID: 38004662 PMCID: PMC10673570 DOI: 10.3390/microorganisms11112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Canine otitis externa (OE) is a commonly diagnosed condition seen in veterinary practice worldwide. In this review, we discuss the mechanisms of the disease, with a particular focus on the biological characteristics of Pseudomonas aeruginosa and the impact that antibiotic resistance has on successful recovery from OE. We also consider potential alternatives to antimicrobial chemotherapy for the treatment of recalcitrant infections. P. aeruginosa is not a typical constituent of the canine ear microbiota, but is frequently isolated from cases of chronic OE, and the nature of this pathogen often makes treatment difficult. Biofilm formation is identified in 40-95% of P. aeruginosa from cases of OE and intrinsic and acquired antibiotic resistance, especially resistance to clinically important antibiotics, highlights the need for alternative treatments. The role of other virulence factors in OE remains relatively unexplored and further work is needed. The studies described in this work highlight several potential alternative treatments, including the use of bacteriophages. This review provides a summary of the aetiology of OE with particular reference to the dysbiosis that leads to colonisation by P. aeruginosa and highlights the need for novel treatments for the future management of P. aeruginosa otitis.
Collapse
Affiliation(s)
- Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Stephen Shaw
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| |
Collapse
|
4
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Yoo J, Kang YH, Baek SJ, Hwang CY. Application of cold atmospheric microwave plasma as an adjunct therapy for wound healing in dogs and cats. J Vet Sci 2023; 24:e56. [PMID: 37532299 PMCID: PMC10404707 DOI: 10.4142/jvs.23067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Cold atmospheric plasma is a novel innovative approach for wound care, and it is currently underrepresented in veterinary medicine. OBJECTIVES To investigate the efficacy and safety of using cold atmospheric microwave plasma (CAMP) as an adjunct therapy for wound healing in dogs and cats. METHODS Wound healing outcomes were retrospectively analyzed using clinical records of client-owned dogs and cats who were first managed through standard wound care alone (pre-CAMP period) and subsequently via CAMP therapy (CAMP period). The degree of wound healing was estimated based on wound size and a modified wound scoring system. RESULTS Of the 27 acute and chronic wounds included in the analysis, 81.48% showed complete healing after the administration of CAMP as an adjunct therapy to standard care. Most wounds achieved complete healing in < 5 weeks. Compared with the pre-CAMP period, the rate of wound healing significantly increased every week in the CAMP period in terms of in wound size (first week, p < 0.001; second week, p = 0.012; third week, p < 0.001) and wound score (first week, p < 0.001; second week, p < 0.001; third week, p = 0.001). No adverse events were noted except for mild discomfort and transient erythema. CONCLUSIONS CAMP is a well-tolerated therapeutic option with immense potential to support the treatment of wounds of diverse etiology in small animal practice. Further research is warranted to establish specific criteria for CAMP treatment according to wound characteristics.
Collapse
Affiliation(s)
- Jisu Yoo
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yeong-Hun Kang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Lee N, Kang Y, Song S, Baek S, Hwang C. Evaluation of cold atmospheric microwave plasma on skin physiological parameters and tolerability in dogs. Vet Dermatol 2022; 33:363-370. [DOI: 10.1111/vde.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/17/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Na‐Eun Lee
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine Seoul National University Seoul Korea
| | - Yeong‐Hun Kang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine Seoul National University Seoul Korea
| | - Soon‐Young Song
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine Seoul National University Seoul Korea
| | - Seung‐Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine Seoul National University Seoul Korea
| | - Cheol‐Yong Hwang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine Seoul National University Seoul Korea
| |
Collapse
|
7
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
8
|
Ocaña AV, Aguilera‐Correa JJ, Domínguez‐Jurado E, Pérez‐Martínez FC, Pérez‐Tanoira R, López‐Carretero Y, Masiá‐Mondejar J, Castro‐Osma JA, Esteban J, Alonso‐Moreno C, Molina‐Alarcón M, Seguí P. A bis(pyrazolyl)methane derivative against clinical Staphylococcus aureus strains isolated from otitis externa. Laryngoscope Investig Otolaryngol 2022; 7:283-290. [PMID: 35155809 PMCID: PMC8823158 DOI: 10.1002/lio2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the in vitro antibacterial effects of a p-Cymene-based bis(pyrazolyl)methane derivative (SC-19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE). METHODS Eighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC-19 concentrations. RESULTS When using SC-19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC-19 were 62.5 and 2000 μg/ml against S. aureus and were >2000 μg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC-19 against S. aureus were 125 and >2000 μg/ml, respectively. CONCLUSION Nowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC-19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ana V. Ocaña
- Instituto de Investigación en Discapacidades Neurológicas (IDINE)University of Castilla‐La ManchaAlbaceteSpain
| | | | - Elena Domínguez‐Jurado
- NanoCRIB UnitCentro Regional de Investigaciones BiomédicasAlbaceteSpain
- School of PharmacyUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Francisco C. Pérez‐Martínez
- Instituto de Investigación en Discapacidades Neurológicas (IDINE)University of Castilla‐La ManchaAlbaceteSpain
| | - Ramón Pérez‐Tanoira
- Clinical Microbiology DepartmentHospital Universitario Príncipe de AsturiasMadridSpain
- Biomedicine y Biotechnology Department, School of MedicineUniversity of Alcalá de HenaresAlcalá de HenaresSpain
| | | | - Jesús Masiá‐Mondejar
- Instituto de Investigación en Discapacidades Neurológicas (IDINE)University of Castilla‐La ManchaAlbaceteSpain
| | - José Antonio Castro‐Osma
- NanoCRIB UnitCentro Regional de Investigaciones BiomédicasAlbaceteSpain
- School of PharmacyUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Jaime Esteban
- Clinical Microbiology DepartmentIIS‐Fundacion Jimenez Diaz‐UAMMadridSpain
| | - Carlos Alonso‐Moreno
- NanoCRIB UnitCentro Regional de Investigaciones BiomédicasAlbaceteSpain
- School of PharmacyUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Milagros Molina‐Alarcón
- Instituto de Investigación en Discapacidades Neurológicas (IDINE)University of Castilla‐La ManchaAlbaceteSpain
- Department of NursingUniversity of Castilla‐La ManchaAlbaceteSpain
| | - Pedro Seguí
- Instituto de Investigación en Discapacidades Neurológicas (IDINE)University of Castilla‐La ManchaAlbaceteSpain
- Department of OtorrinolaringologyComplejo Hospitalario UniversitarioAlbaceteSpain
| |
Collapse
|