Ripolles-Garcia A, Chen Y, Sato Y, Gray A, Ying GS, Aguirre GD, Beltran WA. Retinal Vascular Plexuses Are Unequally Affected in Canine Inherited Retinal Degenerations.
Invest Ophthalmol Vis Sci 2022;
63:22. [PMID:
36378130 PMCID:
PMC9672900 DOI:
10.1167/iovs.63.12.22]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose
To characterize the progression of vascular changes that occur in each retinal plexus, in three canine models of inherited retinal degeneration.
Methods
In this retrospective cohort study, we examined the retinal imaging records of 44 dogs from a research colony that had undergone optical coherence tomography angiography (OCTA) imaging. Animals enrolled included crd2/NPHP5 and xlpra2/RPGR mutant dogs imaged at different stages of photoreceptor loss, as well as RHOT4R/+ dogs after acute light-induced rod degeneration. Also included were normal controls imaged at similar ages. OCT angiograms of the superficial vascular plexus combined with the intermediate capillary plexus (SVP + ICP), and the deep capillary plexus (DCP) were analyzed using the AngioTool software to calculate vessel density and other vascular parameters.
Results
A reduction in vessel density was seen over time in both the SVP + ICP and DCP in all mutant dogs but was more pronounced in the DCP. Scans were subclassified based on outer nuclear layer (ONL) thinning compared to age-matched normal controls. When ONL loss was 0% to 50%, vessel density in the DCP was significantly lower than in age-matched controls. In all cases, when ONL loss exceeded 87.5%, vessel density in the SVP + ICP was significantly reduced as well. In the acute light-induced rod degeneration model, the vascular regression changes were observed mainly in the DCP.
Conclusions
Vessel density reduction in dogs undergoing retinal degeneration is first detected by OCTA in the DCP, and only at later stages in the SVP + ICP.
Collapse