1
|
Shao L, Ma L, Xiao JY, Shi LL, Liu TX. PacBio third-generation sequencing detects a new variant, c.27delC, in exon 1 of the ABO gene resulting in a weak B phenotype. Transfus Med 2025; 35:103-105. [PMID: 39545476 DOI: 10.1111/tme.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Affiliation(s)
- L Shao
- Department of Transfusion Research, Jiangsu Province Blood Center, Nanjing, China
| | - L Ma
- Department of Transfusion Research, Jiangsu Province Blood Center, Nanjing, China
| | - J Y Xiao
- Department of Transfusion Research, Jiangsu Province Blood Center, Nanjing, China
| | - L L Shi
- Department of Transfusion Research, Jiangsu Province Blood Center, Nanjing, China
| | - T X Liu
- Department of Transfusion Research, Jiangsu Province Blood Center, Nanjing, China
| |
Collapse
|
2
|
Shao LN, Xia YX, Yang YC, Li N, Li CX, Zhou SH. PacBio Third-Generation Sequencing Reveals an ABO Gene Promoter Mutation, c.-35_-18del, Leading to Weakened B Antigen Expression. Ann Lab Med 2024; 44:614-616. [PMID: 38600024 PMCID: PMC11375197 DOI: 10.3343/alm.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
| | - Yue-Xin Xia
- Dalian Blood Center, Dalian, Liaoning, China
| | | | - Ning Li
- Dalian Blood Center, Dalian, Liaoning, China
| | | | | |
Collapse
|
3
|
Ogasawara K, Sano R, Kominato Y. Review of ABO Expression and Variations based on Transcriptional Regulation of the ABO Blood Group Gene. Transfus Med Hemother 2024; 51:210-224. [PMID: 39135854 PMCID: PMC11318969 DOI: 10.1159/000536556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background and Summary We review the transcriptional regulation of ABO expression and discuss variants in the promoter and erythroid cell-specific regulatory region in individuals with weak ABO phenotypes such as Bm, Am, B3, and A3. We also review the molecular mechanisms responsible for variations in ABO expression in development and disease including the cell type-specific expression of ABO during erythroid cell differentiation, and reduction of A- or B-antigens in cancer cells or on red blood cells in patients with leukemia. Although the relationship between ABO blood group antigens and diseases has been characterized, the physiological significance of the ABO blood group system remains unclear. Key Messages This review discusses accumulated knowledge of the ABO gene regulation and potential reasons for conservation of ABO during evolution.
Collapse
Affiliation(s)
- Kenichi Ogasawara
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Rie Sano
- Department of Forensic Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshihiko Kominato
- Department of Forensic Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
4
|
Single-cell variations in the expression of codominant alleles A and B on RBC of AB blood group individuals. J Genet 2022. [DOI: 10.1007/s12041-022-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Kim TY, Yu H, Seo JY, Cho D. Molecular basis of weak A subgroups in the Korean population: Identification of three novel subgroup-causing variants in the ABO regulatory regions. Transfusion 2021; 62:286-291. [PMID: 34786713 DOI: 10.1111/trf.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recent studies on Chinese and Japanese populations have shown that weak ABO subgroups could be caused by variants in the major regulatory regions of ABO, the proximal promoter, +5.8-kb site, and CCAAT-binding factor/NF-Y binding site. We investigated the molecular basis of weak A subgroups in the Korean population. STUDY DESIGN AND METHODS This study included 11 samples suspected to have a weak A subgroup. These samples were subjected to sequencing analysis of ABO exons 6 and 7. If no subgroup-causing variants were detected in this region, exons 1-5 and three major regulatory regions were sequenced. RESULTS Sequencing analysis of exons 6 and 7 detected two known subgroup alleles (ABO*AW.10, n = 5; ABO*AEL.02, n = 2). The remaining four samples contained a sequence variant in the proximal promoter (g.4944C>T, n = 1; g.4954G>T, n = 1) or +5.8-kb site (g.10843T>C, n = 1; g.10935C>T, n = 1). Notably, three of the four variants (g.4944C>T, g.4954G>T, and g.10843T>C) have not been reported previously in weak ABO subgroups. CONCLUSION This study provides the first evidence that alterations in the proximal promoter and + 5.8-kb site could account for a substantial proportion of weak A subgroups in the Korean population.
Collapse
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - HongBi Yu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ji Young Seo
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Yu H, Kim TY, Moon SJ, Chung YN, Yoo HJ, Kim JH, Cho D. Sequence variants in the proximal promoter and +5.8-kb site of ABO in Koreans with weak B phenotypes. Vox Sang 2021; 117:442-446. [PMID: 34651317 DOI: 10.1111/vox.13207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Several studies on Chinese and Japanese populations have revealed that a substantial proportion of weak B subgroups are caused by variants in the major regulatory regions of ABO, the proximal promoter, CCAAT-binding factor/NF-Y binding site and +5.8-kb site. We performed molecular analyses of these regions in Koreans with weak B phenotypes. MATERIALS AND METHODS This study included 16 samples with weak B phenotypes (4 B3 , 1 Bw , 5 A1 B3 and 6 A1 Bw ) harbouring no subgroup-causing variants in ABO exons 6 and 7. These samples were subjected to sequencing analysis of exons 1-5 and the major regulatory regions of ABO. RESULTS Of the 16 samples, 14 were found to carry a sequence variant either in the proximal promoter (g.4991_5008del [n = 3]) or the +5.8-kb site (g.10893G>A [n = 4] and g.10925C>T [n = 7]). The remaining two samples were found to contain no subgroup-causing variants. CONCLUSION Our study demonstrates that sequence variants in the proximal promoter and +5.8-kb site account for a substantial proportion of weak B subgroups in Koreans, suggesting that molecular analysis of these regions is essential for the accurate determination of ABO genotypes in Koreans with weak B phenotypes.
Collapse
Affiliation(s)
- HongBi Yu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Yoo Na Chung
- Department of Laboratory Medicine, Dankook University Hospital, Cheonan, South Korea
| | - Hwa Jong Yoo
- Department of Laboratory Medicine and Genetics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Duck Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
A cell-specific regulatory region of the human ABO blood group gene regulates the neighborhood gene encoding odorant binding protein 2B. Sci Rep 2021; 11:7325. [PMID: 33795748 PMCID: PMC8016878 DOI: 10.1038/s41598-021-86843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 01/27/2023] Open
Abstract
The human ABO blood group system is of great importance in blood transfusion and organ transplantation. ABO transcription is known to be regulated by a constitutive promoter in a CpG island and regions for regulation of cell-specific expression such as the downstream + 22.6-kb site for epithelial cells and a site in intron 1 for erythroid cells. Here we investigated whether the + 22.6-kb site might play a role in transcriptional regulation of the gene encoding odorant binding protein 2B (OBP2B), which is located on the centromere side 43.4 kb from the + 22.6-kb site. In the gastric cancer cell line KATOIII, quantitative PCR analysis demonstrated significantly reduced amounts of OBP2B and ABO transcripts in mutant cells with biallelic deletions of the site created using the CRISPR/Cas9 system, relative to those in the wild-type cells, and Western blotting demonstrated a corresponding reduction of OBP2B protein in the mutant cells. Moreover, single-molecule fluorescence in situ hybridization assays indicated that the amounts of both transcripts were correlated in individual cells. These findings suggest that OBP2B could be co-regulated by the + 22.6-kb site of ABO.
Collapse
|
8
|
Höher G, Rodrigues MMDO, Waskow G, Agnes G, Von Burg PV, Onsten T, Fiegenbaum M, Almeida S. Identification of ACKR1 variants associated with altered Duffy phenotype expression in blood donors from southern Brazil. Transfus Apher Sci 2020; 59:102768. [PMID: 32276863 DOI: 10.1016/j.transci.2020.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
The atypical chemokine receptor 1 gene (ACKR1) is responsible for the clinically significant Duffy blood group. The main antigens of this system, Fya and Fyb, can be related to a null or weak expression of the DARC protein. In the present work, we aimed to identify ACKR1 gene variants in blood donors from southern Brazil based on discrepancies between their serological and molecular typing results. Then, we analyzed the association of these variants with the expression of the Duffy phenotype. The Fy antigen types were determined via hemagglutination and real-time PCR (c.125 G > A, c.265C > T and c.-67T > C SNPs) tests in a sample composed of 382 regular repetitive voluntary blood donors to the Blood Bank of Hospital de Clínicas de Porto Alegre. An inconclusive correlation between phenotype-genotype analyses was found in 11 (2.88 %) donors, and the entire ACKR1 gene was sequenced in these samples. Our investigation found 11 genetic variants, four of which (c.-541C > T, c.21 + 150C > T, c.22-58A > G, and c.298 G > A SNPs) seem to have putative functional effects on the structure and expression of DARC undertaken for in silico analysis (SIFT, PolyPhen-2 and RegulomeDB). Molecular events can result in apparent discrepancies between red cell genotypes and phenotypes. Our findings provided insight into the molecular background of FY antigens to improve technical approaches for red cell genotyping.
Collapse
Affiliation(s)
- Gabriela Höher
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | | | - Gabriela Waskow
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Grasiela Agnes
- Laboratório de Biologia Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Pâmela Victoria Von Burg
- Laboratório de Biologia Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Tor Onsten
- Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, Brazil
| | - Marilu Fiegenbaum
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Kominato Y, Sano R, Takahashi Y, Hayakawa A, Ogasawara K. Human ABO gene transcriptional regulation. Transfusion 2020; 60:860-869. [PMID: 32216153 PMCID: PMC7187371 DOI: 10.1111/trf.15760] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/06/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
10
|
Hayakawa A, Sano R, Takahashi Y, Kubo R, Harada M, Omata M, Yokohama A, Handa H, Tsukada J, Takeshita H, Tsuneyama H, Ogasawara K, Kominato Y. RUNX1 mutation in a patient with myelodysplastic syndrome and decreased erythrocyte expression of blood group A antigen. Transfusion 2019; 60:184-196. [PMID: 31840280 DOI: 10.1111/trf.15628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/30/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Loss of blood group ABO antigens on red blood cells (RBCs) is well known in patients with leukemias, and such decreased ABO expression has been reported to be strongly associated with hypermethylation of the ABO promoter. We investigated the underlying mechanism responsible for A-antigen reduction on RBCs in a patient with myelodysplastic syndrome. STUDY DESIGN AND METHODS Genetic analysis of ABO was performed by PCR and sequencing using peripheral blood. RT-PCR were carried out using cDNA prepared from total bone marrow (BM) cells. Bisulfite genomic sequencing was performed using genomic DNA from BM cells. Screening of somatic mutations was carried out using a targeted sequencing panel with genomic DNA from BM cells, followed by transient transfection assays. RESULTS Genetic analysis of ABO did not reveal any mutation in coding regions, splice sites, or regulatory regions. RT-PCR demonstrated reduction of A-transcripts when the patient's RBCs were not agglutinated by anti-A antibody and did not indicate any significant increase of alternative splicing products in the patient relative to the control. DNA methylation of the ABO promoter was not obvious in erythroid cells. Targeted sequencing identified somatic mutations in ASXL1, EZH2, RUNX1, and WT1. Experiments involving transient transfection into K562 cells showed that the expression of ABO was decreased by expression of the mutated RUNX1. CONCLUSION Because the RUNX1 mutation encoded an abnormally elongated protein without a transactivation domain which could act as dominant negative inhibitor, this frame-shift mutation in RUNX1 may be a genetic candidate contributing to A-antigen loss on RBCs.
Collapse
Affiliation(s)
- Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Megumi Harada
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masato Omata
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University School of Medicine, Izumo, Japan
| | | | | | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
11
|
Hellberg Å, Hult AK, Moser I, Tomaz B, Rodrigues M, Olsson ML. A novel single-nucleotide substitution in the proximal ABO promoter gives rise to the B 3 phenotype. Transfusion 2019; 59:E1-E3. [PMID: 31329303 DOI: 10.1111/trf.15457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Åsa Hellberg
- Clinical Immunology and Transfusion Medicine, Division of Laboratory Medicine, Office of Medical Services, Lund University, Lund, Sweden
| | - Annika K Hult
- Clinical Immunology and Transfusion Medicine, Division of Laboratory Medicine, Office of Medical Services, Lund University, Lund, Sweden
| | - Ines Moser
- Immunohematology Reference Laboratory, Lisbon Blood and Transplant Centre, Lisbon, Portugal
| | - Beatriz Tomaz
- Labeto, Centro de Análises Bioquímicas, Leiria, Portugal
| | - Maria Rodrigues
- Immunohematology Reference Laboratory, Lisbon Blood and Transplant Centre, Lisbon, Portugal
| | - Martin L Olsson
- Clinical Immunology and Transfusion Medicine, Division of Laboratory Medicine, Office of Medical Services, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Tao C, Xiao J, Hu Y, Huang C, Sun J, Li M, Chen Q. A novel B allele with c.28 + 5885C>T substitution in the erythroid cell-specific regulatory element identified in an individual with phenotype B3. Transfusion 2017; 57:1318-1319. [DOI: 10.1111/trf.14064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/27/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Cuihua Tao
- Department of Blood Transfusion; Wuhan Asia Heart Hospital; Wuhan Hubei China
| | - Jianyu Xiao
- Jiangsu Province Blood Center; Nanjing Jiangsu
| | - Yuanping Hu
- Department of Blood Transfusion; Wuhan Asia Heart Hospital; Wuhan Hubei China
| | | | - Jun Sun
- Jiangsu Province Blood Center; Nanjing Jiangsu
| | - Min Li
- The Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College; Nanjing Jiangsu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Nanjing Jiangsu China
| | - Qing Chen
- Jiangsu Province Blood Center; Nanjing Jiangsu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs; Nanjing Jiangsu China
- Soochow University; Suzhou Jiangsu China
| |
Collapse
|