1
|
Farias FHG, Mhlanga-Mutangadura T, Guo J, Hansen L, Johnson GS, Katz ML. FAN1 Deletion Variant in Basenji Dogs with Fanconi Syndrome. Genes (Basel) 2024; 15:1469. [PMID: 39596669 PMCID: PMC11593659 DOI: 10.3390/genes15111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Fanconi syndrome is a disorder of renal proximal tubule transport characterized by metabolic acidosis, amino aciduria, glucosuria, and phosphaturia. There are acquired and hereditary forms of this disorder. A late-onset form of Fanconi syndrome in Basenjis was first described in 1976 and is now recognized as an inherited disease in these dogs. In part because of the late onset of disease signs, the disorder has not been eradicated from the breed by selective mating. A study was therefore undertaken to identify the molecular genetic basis of the disease so that dogs could be screened prior to breeding in order to avoid generating affected offspring. Methods: Linkage analysis within a large family of Basenjis that included both affected and unaffected individuals was performed to localize the causative variant within the genome. Significant linkage was identified between chromosome 3 (CFA3) makers and the disease phenotype. Fine mapping restricted the region to a 2.7 Mb section of CFA3. A whole genome sequence of a Basenji affected with Fanconi syndrome was generated, and the sequence data were examined for the presence of potentially deleterious homozygous variants within the mapped region. Results: A homozygous 317 bp deletion was identified in the last exon of FAN1 of the proband. 78 Basenjis of known disease status were genotyped for the deletion variant. Among these dogs, there was almost complete concordance between genotype and phenotype. The only exception was one dog that was homozygous for the deletion variant but did not exhibit signs of Fanconi syndrome. Conclusions: These data indicate that the disorder is very likely the result of FAN1 deficiency. The mechanism by which this deficiency causes the disease signs remains to be elucidated. FAN1 has endonuclease and exonuclease activity that catalyzes incisions in regions of double-stranded DNA containing interstrand crosslinks. FAN1 inactivation may cause Fanconi syndrome in Basenjis by sensitization of kidney proximal tubule cells to toxin-mediated DNA crosslinking, resulting in the accumulation of genomic and mitochondrial DNA damage in the kidney. Differential exposure to environmental toxins that promote DNA crosslink formation may explain the wide age-at-onset variability for the disorder in Basenjis.
Collapse
Affiliation(s)
- Fabiana H. G. Farias
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
| | - Tendai Mhlanga-Mutangadura
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
| | - Juyuan Guo
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
| | - Liz Hansen
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
| | - Gary S. Johnson
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
| | - Martin L. Katz
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (F.H.G.F.); (T.M.-M.); (J.G.); (L.H.)
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Zhou H, Xiong D, Feng Y, Jiang J. Deferasirox-induced hyperammonemia and Fanconi syndrome: a case report. Front Pediatr 2024; 12:1461867. [PMID: 39449753 PMCID: PMC11499891 DOI: 10.3389/fped.2024.1461867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background The exact mechanism of hyperammonemia is thought to be multifactorial, but is not yet fully understood. No studies have yet reported hyperammonemia combined with Fanconi syndrome caused by deferasirox. Case presentation A 10-year-old girl was admitted for vomiting and altered consciousness. Blood testing revealed hyperammonemia and normal liver and coagulation functions. During hospitalization, the patient also exhibited hyperchloremic metabolic acidosis, hypokalemia, hyponatremia, and hypophosphatemia. Additionally, urinalysis revealed glucose and protein levels clinically consistent with Fanconi syndrome. The patient had a history of severe beta-thalassemia and had received intermittent blood transfusions for approximately ten years. The patient had been administered oral deferasirox at a 400 mg/day dose at the age of four, which had been gradually increased to the current 750 mg/day dosage. Upon admission, deferasirox was discontinued and treatment including mechanical ventilation, continuous blood purification therapy for ammonia reduction and acidosis, and electrolyte imbalance corrections was administered. Subsequently, serological markers returned to normal, urine test findings improved. To the best of our knowledge, this is the first report of a case of hyperammonemia with Fanconi syndrome owing to deferasirox. Conclusions For effective management and long-term follow-up of chronic diseases in children, pediatricians must master standardized treatments and the adverse reactions of various drugs. When symptoms are difficult to explain clinically, we must trace the source and adjust the treatment plan to maximize improving the patient's prognosis.
Collapse
Affiliation(s)
| | | | | | - Jianyu Jiang
- Intensive Care Unit, Chongqing University Three Gorges Hospital, Chongqing, Wanzhou, China
| |
Collapse
|
3
|
Wang DP, Zhao R, Wang HF, Wang MY, Hu WS, Lin MM, Shu W, Sun YJ, Cao JM, Cui W, Zhou X. Crystal structure of mRNA cap (guanine-N7) methyltransferase E12 subunit from monkeypox virus and discovery of its inhibitors. Int J Biol Macromol 2023; 253:127565. [PMID: 37866584 DOI: 10.1016/j.ijbiomac.2023.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
In July 2022, the World Health Organization announced monkeypox as a public health emergency of international concern (PHEIC), and over 85,000 global cases have been reported currently. However, preventive and therapeutic treatments for the monkeypox virus (MPXV) remain limited. MPXV mRNA cap N7 methyltransferase (MTase) is composed of two subunits (E1 C-terminal domain (E1CTD) and E12) which are essential for the replication of MPXV. Here, we solved a 2.16 Å crystal structure of E12. We also docked the D1CTD of the vaccinia virus (VACV) corresponding to the E1CTD in MPXV with E12 and found critical residues at their interface. These residues were further used for drug screening. After virtual screening, the top 347 compounds were screened out and a list of top 20 potential MPXV E12 inhibitors were discovered, including Rutin, Quercitrin, Epigallocatechin, Rosuvastatin, 5-hydroxy-L-Tryptophan, and Deferasirox, etc., which were potential E12 inhibitors. Taking the advantage of the previously unrecognized special structure of MPXV MTase composing of E1CTD and E12 heterodimer, we screened for inhibitors targeting MTase for the first time based on the interface between the heterodimer of MPXV MTase. Our study may provide insights into the development of anti-MPXV drugs.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Hao-Feng Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wen-Shu Hu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Meng-Meng Lin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Shu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yao-Jun Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Cancarevic I, Ilyas U, Nassar M. Hypophosphatemia in Patients With Multiple Myeloma. Cureus 2023; 15:e40487. [PMID: 37342302 PMCID: PMC10279409 DOI: 10.7759/cureus.40487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Hypophosphatemia is among the most common electrolyte abnormalities, especially among patients with underlying malignancies, and is frequently associated with adverse prognoses. Phosphorus levels are regulated through a number of mechanisms, including parathyroid hormone (PTH), fibroblast growth factor-23 (FGF-23), vitamin D, and other electrolyte levels themselves. Clinically, the findings are nonspecific, and the diagnosis is frequently delayed. This article is a narrative literature review. The PubMed database was searched for relevant articles pertaining to hypophosphatemia causes and consequences in patients suffering from multiple myeloma. We found a variety of causes of hypophosphatemia in patients with multiple myeloma. Tumor-induced osteopenia, although more common among patients with small squamous cell carcinomas, can occur with multiple myeloma as well. Additionally, both light chains themselves and medications can trigger Fanconi syndrome, which leads to phosphorus wasting by the kidney. Bisphosphonates, in addition to being a possible cause of Fanconi syndrome, lead to a decrease in calcium levels, which then stimulates parathyroid hormone (PTH) release, predisposing the patient to significant hypophosphatemia. Additionally, many of the more modern medications used to manage multiple myeloma have been associated with hypophosphatemia. A better understanding of those mechanisms may give clinicians a clearer idea of which patients may need more frequent screening as well as what the potential triggers in the individual patient may be.
Collapse
Affiliation(s)
- Ivan Cancarevic
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Usman Ilyas
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Mahmoud Nassar
- Internal Medicine, Icahn School of Medicine at Mount Sinai, NYC Health + Hospitals/Queens, New York, USA
| |
Collapse
|
5
|
Abstract
Conventional therapy for severe thalassemia includes regular red cell transfusions and iron chelation therapy to prevent and treat complications of iron overload. Iron chelation is very effective when appropriately used, but inadequate iron chelation therapy continues to contribute to preventable morbidity and mortality in transfusion-dependent thalassemia. Factors that contribute to suboptimal iron chelation include poor adherence, variable pharmacokinetics, chelator adverse effects, and difficulties with precise monitoring of response. The regular assessment of adherence, adverse effects, and iron burden with appropriate treatment adjustments is necessary to optimize patient outcomes.
Collapse
Affiliation(s)
- Janet L Kwiatkowski
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3501 Civic Center Boulevard, Clinical Hub Building, Room 13547, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Scoglio M, Cappellini MD, D’Angelo E, Bianchetti MG, Lava SAG, Agostoni C, Milani GP. Kidney Tubular Damage Secondary to Deferasirox: Systematic Literature Review. CHILDREN 2021; 8:children8121104. [PMID: 34943300 PMCID: PMC8700300 DOI: 10.3390/children8121104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Deferasirox is a first-line therapy for iron overload that can sometimes cause kidney damage. To better define the pattern of tubular damage, a systematic literature review was conducted on the United States National Library of Medicine, Excerpta Medica, and Web of Science databases. Twenty-three reports describing 57 individual cases could be included. The majority (n = 35) of the 57 patients were ≤18 years of age and affected by thalassemia (n = 46). Abnormal urinary findings were noted in 54, electrolyte or acid–base abnormalities in 46, and acute kidney injury in 9 patients. Latent tubular damage was diagnosed in 11 (19%), overt kidney tubular damage in 37 (65%), and an acute kidney injury in the remaining nine (16%) patients. Out of the 117 acid–base and electrolyte disorders reported in 48 patients, normal-gap metabolic acidosis and hypophosphatemia were the most frequent. Further abnormalities were, in decreasing order of frequency, hypokalemia, hypouricemia, hypocalcemia, and hyponatremia. Out of the 81 abnormal urinary findings, renal glucosuria was the most frequent, followed by tubular proteinuria, total proteinuria, and aminoaciduria. In conclusion, a proximal tubulopathy pattern may be observed on treatment with deferasirox. Since deferasirox-associated kidney damage is dose-dependent, physicians should prescribe the lowest efficacious dose.
Collapse
Affiliation(s)
- Martin Scoglio
- Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, 6500 Bellinzona, Switzerland; (M.S.); (M.G.B.)
| | - Maria Domenica Cappellini
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.D.C.); (E.D.); (C.A.); (G.P.M.)
| | - Emanuela D’Angelo
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.D.C.); (E.D.); (C.A.); (G.P.M.)
| | - Mario G. Bianchetti
- Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, 6500 Bellinzona, Switzerland; (M.S.); (M.G.B.)
| | - Sebastiano A. G. Lava
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1010 Lausanne, Switzerland
- Heart Failure and Transplantation, Department of Pediatric Cardiology, Great Ormond Street Hospital, London WC1N 3JH, UK
- Correspondence:
| | - Carlo Agostoni
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.D.C.); (E.D.); (C.A.); (G.P.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gregorio P. Milani
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.D.C.); (E.D.); (C.A.); (G.P.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
7
|
Pharmacological and clinical evaluation of deferasirox formulations for treatment tailoring. Sci Rep 2021; 11:12581. [PMID: 34131221 PMCID: PMC8206201 DOI: 10.1038/s41598-021-91983-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/20/2021] [Indexed: 01/19/2023] Open
Abstract
Deferasirox (DFX) is the newest among three different chelators available to treat iron overload in iron-loading anaemias, firstly released as Dispersible Tablets (DT) and more recently replaced by Film-Coated Tablets (FCT). In this retrospective observational study, pharmacokinetics, pharmacodynamics, and safety features of DFX treatment were analyzed in 74 patients that took both formulations subsequently under clinical practice conditions. Bioavailability of DFX FCT compared to DT resulted higher than expected [Cmax: 99.5 (FCT) and 69.7 (DT) μMol/L; AUC: 1278 (FCT) and 846 (DT), P < 0.0001]. DFX FCT was also superior in scalability among doses. After one year of treatment for each formulation, no differences were observed between the treatments in the overall iron overload levels; however, DFX FCT but not DT showed a significant dose–response correlation [Spearman r (dose-serum ferritin variation): − 0.54, P < 0.0001]. Despite being administered at different dosages, the long-term safety profile was not different between formulations: a significant increase in renal impairment risk was observed for both treatments and it was reversible under strict monitoring (P < 0.002). Altogether, these data constitute a comprehensive comparison of DFX formulations in thalassaemia and other iron-loading anaemias, confirming the effectiveness and safety characteristics of DFX and its applicability for treatment tailoring.
Collapse
|