1
|
Hao Q, Wang Z, Wang Q, Chen B, Qian H, Liu X, Cao H, Xia W, Jiang J, Lu Z. Identification and characterization of lncRNA AP000253 in occult hepatitis B virus infection. Virol J 2021; 18:125. [PMID: 34112188 PMCID: PMC8194241 DOI: 10.1186/s12985-021-01596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies suggest that lncRNAs may play significant roles in the development of hepatitis B virus (HBV) infection. However, as a special stage of HBV infection, the lncRNA expression in occult HBV infection (OBI) remains unclear. METHODS The plasma level of 15 HBV infection-related lncRNAs was initially detected using qRT-PCR in 10 OBI and 10 healthy controls (HCs) in discovery phase. Significantly dysregulated lncRNAs were subsequently validated in another 64 OBI, 20 HCs, 31 chronic hepatitis B (CHB) and 20 asymptomatic HBsAg carriers (ASC). Moreover, the AP000253 expression in liver tissues and its potential biological functions in HBV infection were further investigate with public transcriptomic data and HBV-expressing cell lines. RESULTS Among candidate lncRNAs, the plasma level of AP000253 decreased significantly in OBI, ASC and CHB patients compared to HCs, while no difference was found among OBI, ASC and CHB patients. In liver tissues, similar AP000253 expression was also observed from the GSE83148 dataset, while that in HBV-expressing hepatoma cells was opposite. ROC curve analysis indicated that plasma AP000253 yielded an AUC of 0.73 with 60% sensitivity and 75% specificity when differentiating OBI from HCs, but it could not specifically separate the stage of chronic HBV infection. Furthermore, functional experiments suggested that AP000253 could promote HBV transcription and replication in hepatoma cell lines. CONCLUSIONS AP000253 might be involved in HBV replication, and be served as a potential biomarker for HBV infection. In the setting of blood donations, plasma AP000253 would be more useful to moderately distinguish OBI in HBsAg-negative donors. However, the AP000253 expression in liver tissues and associated molecular mechanism of HBV infection deserve further study in future.
Collapse
Affiliation(s)
- Qingqin Hao
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Zheng Wang
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China
| | - Qinghui Wang
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Bo Chen
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Huizhong Qian
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Xiao Liu
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Hong Cao
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China
| | - Wei Xia
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China.
| | - Jian Jiang
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China.
| | - Zhonghua Lu
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China.
| |
Collapse
|
2
|
Nguyen NT, Aprahamian H, Bish EK, Bish DR. A methodology for deriving the sensitivity of pooled testing, based on viral load progression and pooling dilution. J Transl Med 2019; 17:252. [PMID: 31387586 PMCID: PMC6683472 DOI: 10.1186/s12967-019-1992-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pooled testing, in which biological specimens from multiple subjects are combined into a testing pool and tested via a single test, is a common testing method for both surveillance and screening activities. The sensitivity of pooled testing for various pool sizes is an essential input for surveillance and screening optimization, including testing pool design. However, clinical data on test sensitivity values for different pool sizes are limited, and do not provide a functional relationship between test sensitivity and pool size. We develop a novel methodology to accurately compute the sensitivity of pooled testing, while accounting for viral load progression and pooling dilution. We demonstrate our methodology on the nucleic acid amplification testing (NAT) technology for the human immunodeficiency virus (HIV). METHODS Our methodology integrates mathematical models of viral load progression and pooling dilution to derive test sensitivity values for various pool sizes. This methodology derives the conditional test sensitivity, conditioned on the number of infected specimens in a pool, and uses the law of total probability, along with higher dimensional integrals, to derive pooled test sensitivity values. We also develop a highly accurate and easy-to-compute approximation function for pooled test sensitivity of the HIV ULTRIO Plus NAT Assay. We calibrate model parameters using published efficacy data for the HIV ULTRIO Plus NAT Assay, and clinical data on viral RNA load progression in HIV-infected patients, and use this methodology to derive and validate the sensitivity of the HIV ULTRIO Plus Assay for various pool sizes. RESULTS We demonstrate the value of this methodology through optimal testing pool design for HIV prevalence estimation in Sub-Saharan Africa. This case study indicates that the optimal testing pool design is highly efficient, and outperforms a benchmark pool design. CONCLUSIONS The proposed methodology accounts for both viral load progression and pooling dilution, and is computationally tractable. We calibrate this model for the HIV ULTRIO Plus NAT Assay, show that it provides highly accurate sensitivity estimates for various pool sizes, and, thus, yields efficient testing pool design for HIV prevalence estimation. Our model is generic, and can be calibrated for other infections.
Collapse
Affiliation(s)
- Ngoc T Nguyen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Hrayer Aprahamian
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ebru K Bish
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Douglas R Bish
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis 2019; 38:829-842. [PMID: 30798399 DOI: 10.1007/s10096-019-03515-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
Significant advances have been made in the molecular assays used for the detection of human immunodeficiency virus (HIV), which are crucial in preventing HIV transmission and monitoring disease progression. Molecular assays for HIV diagnosis have now reached a high degree of specificity, sensitivity and reproducibility, and have less operator involvement to minimize risk of contamination. Furthermore, analyses have been developed for the characterization of host gene polymorphisms and host responses to better identify and monitor HIV-1 infections in the clinic. Currently, molecular technologies including HIV quantitative and qualitative assays are mainly based on the polymerase chain reaction (PCR), transcription-mediated amplification (TMA), nucleic acid sequence-based amplification (NASBA), and branched chain (b) DNA methods and widely used for HIV detection and characterization, such as blood screening, point-of-care testing (POCT), pediatric diagnosis, acute HIV infection (AHI), HIV drug resistance testing, antiretroviral (AR) susceptibility testing, host genome polymorphism testing, and host response analysis. This review summarizes the development and the potential utility of molecular assays used to detect and characterize HIV infections.
Collapse
|
4
|
Nguyen NT, Bish EK, Aprahamian H. Sequential prevalence estimation with pooling and continuous test outcomes. Stat Med 2018; 37:2391-2426. [PMID: 29687473 DOI: 10.1002/sim.7657] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Prevalence estimation is crucial for controlling the spread of infections and diseases and for planning of health care services. Prevalence estimation is typically conducted via pooled, or group, testing due to limited testing budgets. We study a sequential estimation procedure that uses continuous pool readings and considers the dilution effect of pooling so as to efficiently estimate an unknown prevalence rate. Embedded into the sequential estimation procedure is an optimization model that determines the optimal pooling design (number of pools and pool sizes) under a limited testing budget, considering the trade-off between testing cost and estimation accuracy. Our numerical study indicates that the proposed sequential estimation procedure outperforms single-stage procedures, or procedures that use binary test outcomes. Further, the sequential procedure provides robust prevalence estimates in cases where the initial estimate of the unknown prevalence rate is poor, or the assumed distribution of the biomarker load in infected subjects is inaccurate. Thus, when limited and unreliable information is available about the current status of, or biomarker dynamics related to, an infection, the sequential procedure becomes an attractive estimation strategy, due to its ability to mitigate the initial bias.
Collapse
Affiliation(s)
- Ngoc T Nguyen
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Ebru K Bish
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Hrayer Aprahamian
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
5
|
Abdel-Moneim AS, E. Mahfouz M, Zytouni DM. Detection of human bocavirus in Saudi healthy blood donors. PLoS One 2018; 13:e0193594. [PMID: 29489915 PMCID: PMC5831472 DOI: 10.1371/journal.pone.0193594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/14/2018] [Indexed: 01/02/2023] Open
Abstract
Human bocavirus is associated with respiratory disease worldwide, mainly in children. There are conflicting results, however, regarding the existence of the HBoV in blood donors. Three hundred whole blood samples from non-immunodeficient healthy blood donors were screened for the presence of HBoV by polymerase chain reaction. The HBoV genotype of positive samples was determined using direct gene sequencing. Twenty-one out of the three hundred blood samples were found to be positive for HBoV. Sequence analysis of the positive samples revealed that all the strains were related to the HBoV-1 type with a low rate of variation among the detected sequences. It was concluded that there is a considerable risk of contracting HBoV from a blood transfusion from normal healthy individuals.
Collapse
Affiliation(s)
- Ahmed S. Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Al-Taif, Saudi Arabia
- Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammad E. Mahfouz
- Department of Surgery, College of Medicine, Taif University, Al-Taif, Saudi Arabia
- King Faisal Hospital, Al-Taif, Saudi Arabia
| | | |
Collapse
|