Kim AY, Elam LH, Lambrechts NE, Salman MD, Duerr FM. Appendicular skeletal muscle mass assessment in dogs: a scoping literature review.
BMC Vet Res 2022;
18:280. [PMID:
35842654 PMCID:
PMC9288046 DOI:
10.1186/s12917-022-03367-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Monitoring changes in appendicular skeletal muscle mass is frequently used as a surrogate marker for limb function. The primary objective of this study was to review scientific information related to the assessment of appendicular skeletal muscle mass in dogs. The secondary objective was to develop practical recommendations for serial evaluation of muscle mass.
METHODS
A scoping review was conducted with a systematic search of PubMed, Web of Science, CAB abstract, and Cochrane from inception to June 2021. The following modalities were included in the search: limb circumference, diagnostic ultrasound, computed tomography, magnetic resonance imaging, and dual-energy x-ray absorptiometry.
RESULTS
A total of 62 articles that measured appendicular skeletal muscle mass in dogs were identified. Limb circumference (55 articles) was the most commonly used modality. Its reliability was investigated in five studies. Several factors, including measuring tape type, body position, joint angles, and the presence of hair coat, were reported as variables that can affect measurements. Diagnostic ultrasound (five articles) was validated in three articles, but there is scarce information about observer reliability and variables affecting the measurement. Computed tomography (four articles) and magnetic resonance imaging (one article) have been used to validate other modalities at a single time point rather than as a clinical tool for serial muscle mass monitoring. Dual-energy x-ray absorptiometry (two articles) has been used to quantify specific skeletal muscle mass but was mainly used to evaluate body composition in dogs.
CONCLUSION
Limb circumference and ultrasound are likely the main modalities that will continue to be used for serial muscle mass measurement in the clinical setting unless a new technology is developed. The reliability of limb circumference is questionable. Several key factors, including measuring tape type, body position, joint angles, and coat clipping, need to be controlled to improve the reliability of limb circumference measurements. Ultrasound may provide a reasonable alternative, but further studies are required to evaluate the reliability of this modality and identify factors that influence ultrasound measurements.
Collapse