1
|
Wu ML, Yang ZM, Dong HC, Zhang H, Zheng X, Yuan B, Yang Y, Liu J, Li PN. Maggot extract accelerates skin wound healing of diabetic rats via enhancing STAT3 signaling. PLoS One 2024; 19:e0309903. [PMID: 39240845 PMCID: PMC11379160 DOI: 10.1371/journal.pone.0309903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND Diabetic skin wound is a complex problem due to the disruption of normal repairing program and lack of effective remedy. Lucilia sericata larvae (maggot) is a folk method to treat chronic skin wound, while its therapeutic effects on that caused by diabetic remains unknown. OBJECTIVE This study aims to investigate the therapeutic effects of maggot extract (M.E.) on diabetic skin wound and its molecular mechanism by establishing the skin wound model of diabetic Sprague Dawley (SD) rats. METHODS Diabetic model was established by injecting intraperitoneally streptozotocin in SD rats under specific pathogen-free (SPF) conditions. The rat fasting blood glucose values were ≧16.7 mmol/L 72 hours after intraperitoneal streptozotocin (60mg/kg body weight) injection. The rats were divided into five groups (n = 10/group): normal group: normal SD rats without any treatment, diabetic blank group: the diabetic rats without any treatment, Vaseline group: the diabetic rats dressed with Vaseline, recombinant human epidermal-growth-factor (rhEGF) group: the diabetic rats dressed with a mixture of Vaseline and 200 μg/g rhEGF, M.E. group: the diabetic rats dressed with a mixture of Vaseline and 150 μg/ml maggot extract. The round open wounds (1.0 cm in diameter) down to the muscle fascia were made on both sides of rat dorsa by removing the skin layer (epidermis and dermis) and were daily photographed for calculating their healing rates. Hematoxylin-eosin (HE) and Masson's trichrome staining were performed on skin wound sections to analyze re-epithelialization and granulation tissue formation. Immunohistochemical (IHC), immunofluorescent (IF) stainings and Western blotting were conducted to analyze the statuses of STAT3 signaling. RESULTS The average wound healing rates on the 14th day were 91.7% in the normal, 79.6% in M.E., 71% in rhEGF, 55.1% in vaseline and 43.3% in the diabetes blank group. Morphological staining showed more active granulation tissue formation, re-epithelialization and neovascularization in M.E.-group than those in the blank and the vaseline-treated groups. Decreased p-STAT3 nuclear tranlocation and down-regulated Bcl-2, CyclinD1 and vascular endothelial growth factor (VEGF) expression were evidenced in the diabetic rats, which could be improved by rhEGF and especially M.E. CONCLUSION Maggot extract would be an alternative and/or adjuvant candidate for the better management of diabetic skin wounds because of its activity in enhancing STAT3 activation.
Collapse
Affiliation(s)
- Mo-Li Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhe-Ming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hai-Chao Dong
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hong Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Yuan
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Yang
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Chen H, Zhang T, Yan S, Zhang S, Fu Q, Xiong C, Zhou L, Ma X, Wang R, Chen G. Protective effects of the bioactive peptide from maggots against skin flap ischemia‒reperfusion injury in rats. Heliyon 2024; 10:e29874. [PMID: 38694094 PMCID: PMC11058300 DOI: 10.1016/j.heliyon.2024.e29874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Ischemia‒reperfusion (I/R) injury is a frequently observed complication after flap surgery, and it affects skin flap survival and patient prognosis. Currently, there are no proven safe and effective treatment options to treat skin flap I/R injury. Herein, the potential efficacies of the bioactive peptide from maggots (BPM), as well as its underlying mechanisms, were explored in a rat model of skin flap I/R injury and LPS- or H2O2-elicited RAW 264.7 cells. We demonstrated that BPM significantly ameliorated the area of flap survival, and histological changes in skin tissue in vivo. Furthermore, BPM could markedly restore or enhance Nrf2 and HO-1 levels, and suppress the expression of pro-inflammatory cytokines, including TLR4, p-IκB, NFκB p65, p-p65, IL-6, and TNF-α in I/R-injured skin flaps. In addition, BPM treatment exhibited excellent biocompatibility with an adequate safety profile, while it exhibited superior ROS-scavenging ability and the upregulation of antioxidant enzymes in vitro. Mechanistically, the above benefits related to BPM involved the activation of Nrf2/HO-1 and suppression of TLR4/NF-κB pathway. Taken together, this study may provide a scientific basis for the potential therapeutic effect of BPM in the prevention of skin flap I/R injury and other related diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Tianqi Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Su Yan
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Shan Zhang
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qiuyue Fu
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Chuchu Xiong
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Lina Zhou
- Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, PR China
| | - Xiao Ma
- Yixing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yixing, Jiangsu, PR China
| | - Rong Wang
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Gang Chen
- Department of Plastic Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, PR China
| |
Collapse
|
3
|
Sahin E, Karaismailoglu B, Tutuncu MN, Polat E, Botanlioglu H. Maggot Treatment of Necrotic Toe Developed After Traumatic Subtotal Amputation. THE INTERNATIONAL JOURNAL OF LOWER EXTREMITY WOUNDS 2023; 22:174-178. [PMID: 33626955 DOI: 10.1177/1534734621997283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Maggot debridement therapy (MDT) has been used for years in the treatment of chronic wounds and necrotic tissues. We report a case of subtotally amputated third toe that was treated with MDT after reattachment and developing complete necrosis. The necrotic toe was replaced with viable tissue and the wound healed completely after 2 weeks of MDT application. This case points out the regenerative effects of MDT besides its mechanical debridement effect on the necrotic tissue.
Collapse
Affiliation(s)
| | | | | | - Erdal Polat
- Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | |
Collapse
|
4
|
Song M, Bai X, Wang D, Wang Q, Pan L, He P, Gong Y, Sun X, Xu X, Che J, Wang S. Combined application of moist exposed burn ointment and maggot therapy in wound healing. J Wound Care 2022; 31:S41-S52. [DOI: 10.12968/jowc.2022.31.sup10.s41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: Hard-to-heal wounds are a global health challenge, and effective treatments are still lacking. Moist exposed burn ointment (MEBO) and maggots are traditional treatments for promoting wound healing. This study was a preliminary exploration of combined maggot therapy and MEBO in the treatment of hard-to-heal wounds. Method: A coexistence experiment was conducted to determine the survival rates of maggots in MEBO. The maggots were placed in two different existence conditions: one set in MEBO (MEBO group), and another set as the control group (no MEBO) to compare survival rates. Case reports describe the use of the combined application of MEBO and maggots in the treatment of patients with hard-to-heal wounds. Results: The coexistence experiment indicated that maggots in the MEBO group had a higher survival rate. From the therapeutic effect of the clinical cases (n=7), the combined application was safe and effective, with all the reported wounds eventually healing. Conclusion: Based on the findings of this study, we believe the combined application of MEBO and maggots is a promising way of promoting wound healing. Further studies and clinical trials are needed to elucidate the mechanism of the combined application in promoting wound healing and to more persuasively clarify the therapeutic effect.
Collapse
Affiliation(s)
- Mingzhi Song
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 2 Department of Orthopaedics, the Third Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaodong Bai
- 3 Department of Plastic Surgery, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Deyu Wang
- 4 Department of Burn and Wound Repair Surgery, the Forth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Qingxin Wang
- 5 The Second Department of General Surgery, the Fifth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Liwen Pan
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 7 Surgical Clinic, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ping He
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 7 Surgical Clinic, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ying Gong
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaohong Sun
- 6 Department of Nursing, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaoguang Xu
- 8 Research Center of High Altitude Medicine, Naqu, Tibet, People's Republic of China
- 9 People's Hospital of Naqu Affiliated to Dalian Medical University, Naqu, Tibet, People's Republic of China
| | - Jianzhong Che
- 4 Department of Burn and Wound Repair Surgery, the Forth People's Hospital of Dalian, Dalian, Liaoning, People's Republic of China
| | - Shouyu Wang
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
- 10 Dalian Runxi Technology Development Co. Ltd, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Song M, Zong J, Zou L, Fu Z, Liu J, Wang S. Biological debridement combined with stem cell therapy will be a convenient and efficient method for treating chronic wounds in the future. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Gazi U, Taylan-Ozkan A, Mumcuoglu KY. The effect of Lucilia sericata larval excretion/secretion (ES) products on cellular responses in wound healing. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:257-266. [PMID: 33314340 DOI: 10.1111/mve.12497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Chronic wounds are still regarded as a serious public health concern, which are on the increase mainly due to the changes in life styles and aging of the human population. There are different types of chronic wounds, each of which requires slightly different treatment strategies. Nevertheless, wound bed preparation is included in treatment of all types of chronic wounds and involves tissue debridement, inflammation, and infection control, as well as moisture balance and epithelial edge advancement. Maggot therapy (MT) is a form of biological debridement which involves the application of live medical grade Lucilia sericata (Meigen, 1826) (Diptera: Calliphoridae) larvae. Whereas it was initially thought to act mainly through debridement, today MT is known to influence all four overlapping physiological phases of wound repair: homeostasis, inflammation, proliferation, and remodelling/maturing. During MT, medical-grade larvae are applied either freely or enclosed in tea-bag like devices (biobag) inside the wounds, which suggests that larva excretion/secretion (ES) products can facilitate the healing processes directly without the need of direct contact with the larvae. This review summarizes the relevant literature on ES-mediated effects on the cellular responses involved in wound healing.
Collapse
Affiliation(s)
- U Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - A Taylan-Ozkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - K Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Wang R, Wang D, Wang H, Wang T, Weng Y, Zhang Y, Luo Y, Lu Y, Wang Y. Therapeutic Targeting of Nrf2 Signaling by Maggot Extracts Ameliorates Inflammation-Associated Intestinal Fibrosis in Chronic DSS-Induced Colitis. Front Immunol 2021; 12:670159. [PMID: 34456904 PMCID: PMC8387595 DOI: 10.3389/fimmu.2021.670159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal fibrosis is induced by excessive myofibroblast proliferation and collagen deposition, which has been regarded as a general pathological feature in inflammatory bowel disease (IBD). Therefore, identifying clinical markers and targets to treat and prevent intestinal fibrosis is urgently needed. The traditional Chinese medicine maggot, commonly known as “wu gu chong”, has been shown to reduce oxidative stress and alleviate inflammation in chronic colitis. This study investigated the mechanisms underlying the effects of maggot extract (ME) on inflammation-associated intestinal fibrosis in TGF-β1-stimulated human intestinal fibroblasts (CCD-18Co cells) and dextran sodium sulphate (DSS)-induced chronic colitis murine model. To assess the severity of inflammation and fibrosis, histological and macroscopic evaluation were carried out. The results showed that ME was a significant inhibitor of body weight loss and colon length shortening in mice with chronic colitis. In addition, ME suppressed the intestinal fibrosis by downregulating TGF-β1/SMADs pathway via upregulation of Nrf2 expression at both protein and mRNA levels. ME markedly increased the expression of Nrf2, thus resulting in a higher level of HO-1. After treatment with Nrf2 inhibitor (ML385) or siRNA-Nrf2 for deactivating Nrf2 pathway, the protective effects of ME were abolished both in vitro and in vivo. Moreover, the histopathological results for the major organs of DSS mice treated with ME showed no signs of clinically important abnormalities. Treatment with ME had no effect on the viability of CCD-18Co cells, suggesting its low in vitro cytotoxicity. Furthermore, ME could mediate intestine health by keeping the balance of the gut microbes through the enhancement of beneficial microbes and suppression of pathogenic microbes. In conclusion, this is the first ever report demonstrating that ME ameliorates inflammation-associated intestinal fibrosis by suppressing TGF-β1/SMAD pathway via upregulation of Nrf2 expression. Our findings highlight the potential of Nrf2 as an effective therapeutic target for alleviating intestinal fibrosis.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Hongwei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Tingyu Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yajing Weng
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yaling Zhang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yongzheng Luo
- School of Chemistry and Life Sciences, Jinling College, Nanjing University, Nanjing, China
| | - Yadong Lu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Li P, Li H, Shu X, Wu M, Liu J, Hao T, Cui H, Zheng L. Intra-articular delivery of flurbiprofen sustained release thermogel: improved therapeutic outcome of collagenase II-induced rat knee osteoarthritis. Drug Deliv 2021; 27:1034-1043. [PMID: 32627602 PMCID: PMC8216450 DOI: 10.1080/10717544.2020.1787555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (OA) is a common degenerative disease. Intra-articular administration of flurbiprofen is frequently employed in clinic to treat OA, while repeated injections are required because of the limited effective duration. To improve therapeutic outcome and prolong the treatment interval, a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) triblock copolymer based flurbiprofen thermosensitive gel for the sustained intra-articular drug delivery was designed in this study. The anti-OA effects of this flurbiprofen thermogel were investigated on collagenase II-induced rat knee OA model by multiple approaches and compared with that of conventional sodium hyaluronate and flurbiprofen injecta. In vitro drug release studies indicated that flurbiprofen was sustained released from the thermosensitive gel for more than three weeks. This sustained drug release system exerted comparable short-term analgesic effects and distinctly improved long-term analgesic efficacy in terms of the increased percentage of the total ipsilateral paw print intensity and the reduced Knee-Bend scores of OA rats. The inflammatory response was attenuated in the samples of flurbiprofen gel treated group by showing decreased IL-1, IL-6, and IL-11 levels in the joint fluid and down-regulated IL-1, IL-6, IL-11, COX-2, TNF-α, and NF-κB/p65 expression in the articular cartilages. The results suggest the suitability of thermosensitive copolymer PCLA-PEG-PCLA for sustained intra-articular effects of flurbiprofen and provide in vivo experimental evidence for potential clinical application of this flurbiprofen delivery system to better management of OA cases.
Collapse
Affiliation(s)
- Peinan Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Haokun Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Moli Wu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tangna Hao
- Department of Pharmacy, Second Clinical College, Dalian Medical University, Dalian, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianjie Zheng
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Abstract
GENERAL PURPOSE To present an overview of the advantages of maggot debridement therapy as a treatment for chronic wounds through the review of several larval properties. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will be able to:1. Summarize the use, process, and precautions for maggot debridement to treat chronic wounds.2. Synthesize the results of the bibliographic review of the use of maggot debridement to treat chronic wounds. ABSTRACT Maggot debridement therapy (MDT) is effective for ulcer debridement, achieving it in less time than other therapies. It offers a benefit to healing. However, it is unclear whether maggots reduce treatment time and there is considerable controversy around the treatment's potential antimicrobial action and cost-effectiveness. Nevertheless, it can be effective in preventing amputations and reducing the need for systemic antibiotics. This bibliographic review assesses the advantages of MDT as a treatment for chronic wounds through the review of several larval properties. The review was carried out by consulting biomedical databases including CINAHL, MEDLINE (PubMed), and Scopus, and concludes that MDT is an effective debridement and potential technique to facilitate healing. However, more data is needed on the wound type application frequency and the efficacy of treatment.
Collapse
|
10
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
11
|
Wang R, Luo Y, Lu Y, Wang D, Wang T, Pu W, Wang Y. Maggot Extracts Alleviate Inflammation and Oxidative Stress in Acute Experimental Colitis via the Activation of Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4703253. [PMID: 31827675 PMCID: PMC6885191 DOI: 10.1155/2019/4703253] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a common chronic remitting disease driven through altered immune responses with production of inflammatory cytokines. Oxidant/antioxidant balance is also suggested to be an important factor for the recurrence and progression of UC. Maggots are known as a traditional Chinese medicine also known as "wu gu chong." NF-E2-related factor-2 (Nrf2) transcription factor regulates the oxidative stress response and also represses inflammation. The aim of this study was to investigate the effects of maggot extracts on the amelioration of inflammation and oxidative stress in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and evaluate if the maggot extracts could repress inflammation and oxidative stress using RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). In the present study, we found that the maggot extracts significantly prevented the loss of body weight and shortening of colon length in UC induced by DSS. Furthermore, DSS-induced expression of proinflammatory cytokines at both mRNA and protein levels in the colon was also attenuated by the maggot extracts. In addition, the maggot extracts could significantly suppress the expression of interleukin- (IL-) 1β, IL-6, TNF-α, NFκB p65, p-IκB, p22-phox, and gp91-phox in LPS-stimulated RAW 264.7 cells and colonic tissues. The maggot extracts increased the level of Nrf2 and prevented the degradation of Nrf2 through downregulating the expression of Keap1, which resulted in augmented levels of HO-1, SOD, and GSH-Px and reduced levels of MPO and MDA. However, after administering an Nrf2 inhibitor (ML385) to block the Nrf2/HO-1 pathway, we failed to observe the protective effects of the maggot extracts in mice with colitis and RAW 264.7 cells. Taken together, our data for the first time confirmed that the maggot extracts ameliorated inflammation and oxidative stress in experimental colitis via modulation of the Nrf2/HO-1 pathway. This study sheds light on the possible development of an effective therapeutic strategy for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yongzheng Luo
- School of Chemistry and Life Sciences, Nanjing University Jinling College, 210089, China
| | - Yadong Lu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Daojuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Tingyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Rezaie F, Momeni-Moghaddam M, Naderi-Meshkin H. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. INT J LOW EXTR WOUND 2019; 18:247-261. [PMID: 31257948 DOI: 10.1177/1534734619859214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skin as a mechanical barrier between the inner and outer environment of our body protects us against infection and electrolyte loss. This organ consists of 3 layers: the epidermis, dermis, and hypodermis. Any disruption in the integrity of skin leads to the formation of wounds, which are divided into 2 main categories: acute wounds and chronic wounds. Generally, acute wounds heal relatively faster. In contrast to acute wounds, closure of chronic wounds is delayed by 3 months after the initial insult. Treatment of chronic wounds has been one of the most challenging issues in the field of regenerative medicine, promoting scientists to develop various therapeutic strategies for a fast, qualified, and most cost-effective treatment modality. Here, we reviewed more recent approaches, including the development of stem cell therapy, tissue-engineered skin substitutes, and skin equivalents, for the healing of complex wounds.
Collapse
Affiliation(s)
- Fahimeh Rezaie
- Hakim Sabzevari University, Sabzevar, Iran.,Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | | | - Hojjat Naderi-Meshkin
- Iranian Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
13
|
Wang R, Wang L, Luo Y, Wang D, Du R, Du J, Wang Y. Maggot protein ameliorates dextran sulphate sodium-induced ulcerative colitis in mice. Biosci Rep 2018; 38:BSR20181799. [PMID: 30393231 PMCID: PMC6259012 DOI: 10.1042/bsr20181799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Maggots are known as a traditional Chinese medicine named as 'wu gu chong'. The aim of the present study was to investigate the therapeutic effect of the maggot protein on dextran sulphate sodium (DSS)-induced colitis in C57BL/6 mice. In the present study, female C57BL/6 mice were given sterile water containing 3% DSS to establish the model of UC. Mice were randomly divided into five groups: control group (sterile water), model group (DSS), treatment group (DSS + maggot protein), mesalazine group (DSS + mesalazine), and maggot protein group (sterile water + maggot protein). The mental state, defecate traits, and changes in body weights were recorded daily. The disease activity index (DAI) as a disease severity criterion was calculated based on body weights and stool consistency and bleeding. All the mice were killed on the 12th day. Colon length, colon histological changes, and other inflammatory factors were analyzed and evaluated. The results showed that colitis models of mice were established successfully. Administration of maggot protein markedly suppressed the severity of UC compared with the DSS model group. Furthermore, maggot protein potently ameliorated DSS-induced weight loss, colon shortening, and colon histological injury. Moreover, the maggot protein exerted anti-inflammatory effects via inhibition of the activation of the nuclear factor κB (NFκB) signaling pathway. In summary, treatment by maggot protein was able to improve not only the symptoms of colitis, but also the microscopic inflammation in mice with DSS-induced colitis. The present study may have implications for developing an effective therapeutic strategy for inflammatory bowel diseases (IBDs).
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lei Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Yongzheng Luo
- School of Chemistry and Life Sciences, Nanjing University Jinling College, Nanjing, 210089, China
| | - Daojuan Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Ronghui Du
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiancheng Du
- Jiangsu Yicheng Bio Technology Co., Ltd., Nantong 226000, China
| | - Yong Wang
- State Key Laboratory of Analytacal Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Song X, Shu XH, Wu ML, Zheng X, Jia B, Kong QY, Liu J, Li H. Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas. BMC Cancer 2018; 18:871. [PMID: 30176837 PMCID: PMC6122735 DOI: 10.1186/s12885-018-4771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background Although our previous study revealed lumbar punctured resveratrol could remarkably prolong the survival of rats bearing orthotopic glioblastomas, it also suggested the administration did not completely suppress rapid tumour growth. These evidences led us to consider that the prognosis of tumour-bearing rats may be further improved if this treatment is used in combination with neurosurgery. Therefore, we investigated the effectiveness of the combined treatment on rat orthotopic glioblastomas. Methods Rat RG2 glioblastoma cells were inoculated into the brains of 36 rats. The rats were subjected to partial tumour removal after they showed symptoms of intracranial hypertension. There were 28 rats that survived the surgery, and these animals were randomly and equally divided into the control group without postoperative treatment and the LP group treated with 100 μl of 300 μM resveratrol via the LP route. Resveratrol was administered 24 h after tumour resection in 3-day intervals, and the animals received 7 treatments. The intracranial tumour sizes, average life span, cell apoptosis and STAT3 signalling were evaluated by multiple experimental approaches in the tumour tissues harvested from both groups. Results The results showed that 5 of the 14 (35.7%) rats in the LP group remained alive over 60 days without any sign of recurrence. The remaining nine animals had a longer mean postoperative survival time (11.0 ± 2.9 days) than that of the (7.3 + 1.3 days; p < 0.05) control group. The resveratrol-treated tumour tissues showed less Ki67 labelling, widely distributed apoptotic regions, upregulated PIAS3 expression and reduced p-STAT3 nuclear translocation. Conclusions This study demonstrates that postoperative resveratrol administration efficiently improves the prognosis of rat advanced orthotopic glioblastoma via inhibition of growth, induction of apoptosis and inactivation of STAT3 signalling. Therefore, this therapeutic approach could be of potential practical value in the management of glioblastomas.
Collapse
Affiliation(s)
- Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Hong Shu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xu Zheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Jia
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. .,South China University of Technology School of Medicine, Guangzhou, 520006, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
15
|
Pharmacological Properties of the Medical Maggot: A Novel Therapy Overview. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4934890. [PMID: 29853956 PMCID: PMC5960508 DOI: 10.1155/2018/4934890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/05/2018] [Indexed: 02/01/2023]
Abstract
In the last decade, maggot has been hailed as the miraculous “medicinal maggot” for its diverse properties, including antimicrobial, antibiofilm, anti-inflammatory, and wound healing activities. The fact that maggots show so many beneficial properties has increased the interest in these tiny larvae dramatically. Whilst there is relatively abundant clinical evidence to demonstrate the success of maggots as debridement agents, not so much emphasis has been placed on the basic science evidence, which was a combination of physical and biochemical actions. This review differs from those earlier works in that it is undertaken to provide an update of the latest scientific basis published on maggot, particularly active ingredients within maggot excretions/secretions (ES). Further investigations should focus on the isolation, identification, recombination, transgenosis, and mass production of the beneficial molecules within maggots.
Collapse
|
16
|
Lumbar puncture-administered resveratrol inhibits STAT3 activation, enhancing autophagy and apoptosis in orthotopic rat glioblastomas. Oncotarget 2018; 7:75790-75799. [PMID: 27716625 PMCID: PMC5342778 DOI: 10.18632/oncotarget.12414] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Trans-resveratrol suppresses glioblastoma growth in vitro, but its effects on intracranial glioblastomas remain untested. Resveratrol crosses the blood–brain barrier, and lumbar puncture (LP) greatly increases its bioavailability in rat brains; therefore, we investigated the effectiveness of LP-administered resveratrol on orthotopic rat glioblastomas. Twenty-four tumor-bearing rats were separated into two groups: Group 1 receiving 100 μl saline containing 0.3% DMSO and Group 2 receiving 100 μl resveratrol (300 μM). Treatments started 3 days after transplantation in 2-day intervals until death. Intracranial drug availabilities, tumor sizes, average life spans and the impacts on STAT3 signaling, apoptosis and autophagy rates were evaluated. MRI imaging revealed that average tumor size in the LP group (495.8 ± 22.3 mm2) was smaller than the control groups (810.3 ± 56.4 mm2; P<0.05). The mean survival time in the LP group (22.2 ± 2.1 d) was longer than control animals (16.0 ± 1.8 d; P<0.05). LP resveratrol-treated glioblastomas showed less Cyclin D1 staining, enhanced autophagy with up-regulated LC3 and Beclin1 expression, and widely distributed apoptotic foci around tumor capillaries with suppressed STAT3 expression and nuclear translocation. In conclusion, LP-delivered resveratrol efficiently inhibited orthotopic rat glioblastoma growth by inactivating STAT3 signaling and enhancing autophagy and apoptosis.
Collapse
|
17
|
Dauros Singorenko P, Rosario R, Windsor JA, Phillips AR, Blenkiron C. The transcriptional responses of cultured wound cells to the excretions and secretions of medicinal Lucilia sericata larvae. Wound Repair Regen 2018; 25:51-61. [PMID: 27868332 DOI: 10.1111/wrr.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
Abstract
Maggots, through their excretions and secretions (ES), promote wound healing by removing necrotic tissue, counter bacterial infection, and activate wound associated cells. We investigated the effects of a physiological dose of maggot ES on four wound-associated cell types in vitro with Affymetrix gene expression arrays; keratinocytes, endothelial cells, fibroblasts, and monocytes. Keratinocytes showed the fewest (n = 5; p < 0.05, fold-change ±2) and smallest fold-changes (up to 2.32×) in gene expression and conversely THP1 monocytes had the most (n = 233) and greatest magnitude (up to 44.3×). There were no genes that were altered in all four cell-lines. Gene pathway analysis identified an enrichment of immune response pathways in three of the treated cell-lines. Analyses by quantitative RT-PCR found many genes dynamically expressed in ES dose dependent manner during the three day treatments. Phenotype analyses, however, found no effects of ES on cell viability, proliferation, migration and angiogenesis. ES was 100× less potent at triggering IL-8 secretion than fibroblasts treated with purified bacterial lipopolysaccharide (LPS; in equivalent amounts to that found in ES; ∼40 EU/ml). Furthermore, co-treatment with LPS and ES decreased the LPS-alone triggered IL-8 secretion by 13%. Although ES had no direct effect on wound cell phenotypes it did partially reduce the immune response to bacterial LPS exposure. These observations were consistent with the profile of transcriptional responses that were dominated by modulation of immune response genes. Maggot therapy may therefore improve wound healing through the secondary effects of these gene changes in the wound cells.
Collapse
Affiliation(s)
- Priscila Dauros Singorenko
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences.,Department of Surgery, Faculty of Medical and Health Sciences
| | - Roseanne Rosario
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences
| | - John A Windsor
- Department of Surgery, Faculty of Medical and Health Sciences.,Maurice Wilkins Centre for Biodiscovery, University of Auckland
| | - Anthony R Phillips
- Department of Surgery, Faculty of Medical and Health Sciences.,Maurice Wilkins Centre for Biodiscovery, University of Auckland.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences.,Department of Surgery, Faculty of Medical and Health Sciences.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Dong JL, Dong HC, Yang L, Qiu ZW, Liu J, Li H, Zhong LX, Song X, Zhang P, Li PN, Zheng LJ. Upregulation of BAG3 with apoptotic and autophagic activities in maggot extract‑promoted rat skin wound healing. Mol Med Rep 2017; 17:3807-3812. [PMID: 29286112 DOI: 10.3892/mmr.2017.8331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
Maggot extract (ME) accelerates rat skin wound healing, however its effect on cell maintenance in wound tissues remains unclear. B‑cell lymphoma (Bcl) 2‑associated athanogene (BAG)3 inhibits apoptosis and promotes autophagy by associating with Bcl‑2 or Beclin 1. Bcl‑2, the downstream effector of signal transducer and activator of transcription 3 signaling, is enhanced in ME‑treated wound tissues, which may reinforce the Bcl‑2 anti‑apoptotic activity and/or cooperate with Beclin 1 to regulate autophagy during wound healing. The present study investigated expression levels of BAG3, Bcl‑2, Beclin 1 and light chain (LC)3 levels in rat skin wound tissues in the presence and absence of ME treatment. The results revealed frequent TUNEL‑negative cell death in the wound tissues in the early three days following injury, irrespective to ME treatment. TUNEL‑positive cells appeared in the wound tissues following 4 days of injury and 150 µg/ml ME efficiently reduced apoptotic rate and enhanced BAG3 and Bcl‑2 expression. Elevated Beclin 1 and LC3 levels and an increased LC3 II ratio were revealed in the ME‑treated tissues during the wound healing. The results of the present study demonstrate the anti‑apoptotic effects of BAG3 and Bcl‑2 in ME‑promoted wound healing. Beclin 1/LC3 mediated autophagy may be favorable in maintaining cell survival in the damaged tissues and ME‑upregulated BAG3 may enhance its activity.
Collapse
Affiliation(s)
- Jian-Li Dong
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hai-Cao Dong
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Liang Yang
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhe-Wen Qiu
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Hong Li
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li-Xia Zhong
- Department of Oncology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xue Song
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peng Zhang
- Experimental Animal Center, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lian-Jie Zheng
- Department of Orthopedic Surgery, Second Clinical College, Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
19
|
Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0003-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bee-derived antibacterial peptide, defensin-1, promotes wound re-epithelialisation in vitro and in vivo. Sci Rep 2017; 7:7340. [PMID: 28779102 PMCID: PMC5544694 DOI: 10.1038/s41598-017-07494-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Royal jelly (RJ) has successfully been used as a remedy in wound healing. RJ has multiple effects, including antibacterial, anti-inflammatory and immunomodulatory activities, in various cell types. However, no component(s) (other than antibacterial) have been identified in RJ-accelerated wound healing. In this study, we demonstrate that keratinocytes are responsible for the elevated production of matrix metalloproteinase-9 (MMP-9) after incubation with a water extract of RJ. Furthermore, the keratinocyte migration and wound closure rates were significantly increased in the presence of RJ extract. MMP-9 production was reduced significantly following proteinase K treatment but remained stable after heat treatment, indicating that active component(s) have a proteinous character. To identify the component responsible for inducing MMP-9 production, RJ extract was fractionated using C18 RP-HPLC. In fractions exhibiting stimulatory activity, we immunochemically detected the bee-derived antibacterial peptide, defensin-1. Defensin-1 was cloned, and recombinant peptide was produced in a baculoviral expression system. Defensin-1 stimulated MMP-9 secretion from keratinocytes and increased keratinocyte migration and wound closure in vitro. In addition, defensin-1 promoted re-epithelisation and wound closure in uninfected excision wounds. These data indisputably demonstrate that defensin-1, a regular but concentration variable factor found in honey and RJ, contributes to cutaneous wound closure by enhancing keratinocyte migration and MMP-9 secretion.
Collapse
|
21
|
Song Q, Xie Y, Gou Q, Guo X, Yao Q, Gou X. JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts. Int J Mol Med 2017; 40:465-473. [PMID: 28656220 PMCID: PMC5504994 DOI: 10.3892/ijmm.2017.3040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Periplaneta americana extracts (PAEs) play a crucial role in skin wound healing. However, their molecular effects and signaling pathways in regenerating tissues and cells are not clear. In this study, we refined the PAE from Periplaneta americana to investigate the mechanisms underlying skin wound healing. The human keratinocyte line HaCaT was selected and a mouse model of deep second-degree thermal burn was established for in vitro and in vivo studies, respectively. PAE treatment induced the proliferation and migration of HaCaT cells and wound healing in the burn model. Furthermore, the effects of PAE on wound healing were found to depend on the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway and Smad3 activities, according to western blot analysis and immunohistochemical (IHC) assays in vitro and in vivo. Pretreatment with a STAT3 inhibitor blocked the cell proliferation and migration induced by PAE. The results indicate the wound-healing function of PAE via enhanced JAK/STAT3 signaling and Smad3 activities. Our studies provide a theoretical basis underlying the role of PAE in cutaneous wound healing.
Collapse
Affiliation(s)
- Qin Song
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Yuxin Xie
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiheng Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqiang Guo
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Qian Yao
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaojun Gou
- College of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|
22
|
Periplaneta americana Extracts Promote Skin Wound Healing via Nuclear Factor Kappa B Canonical Pathway and Extracellular Signal-Regulated Kinase Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5821706. [PMID: 28620419 PMCID: PMC5460390 DOI: 10.1155/2017/5821706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 02/05/2023]
Abstract
Periplaneta americana extracts (PAEs) exhibit wound healing properties. However, the underlying molecular mechanisms are not well understood. Here, we treated human skin fibroblasts (HSF) with PAE and the proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The wound healing and transwell migration assays were used to detect cell migration. Nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) pathways were analyzed by Western blot (WB). Immunofluorescence staining was used to detect the key molecular localization in the cells. The results showed that PAE enhanced the proliferation and migration of HSF cells. The expression and activation of key proteins such as RelA and p-ERK were increased in NF-κB and ERK pathways followed by nuclear translocation. In vivo, both WB and immunohistochemical (IHC) staining showed that PAE enhanced p-IκBα and p-ERK activation and the nuclear translocation of RelA. Our study suggests that the protective function of PAE is mediated via enhanced NF-κB and ERK signaling.
Collapse
|