1
|
Deng P, Shi Z, Fang F, Xu Y, Zhou LA, Liu Y, Jin M, Chen T, Wang Y, Cao Y, Su L, Liang H, Liu Q. Wireless matrix metalloproteinase-9 sensing by smart wound dressing with controlled antibacterial nanoparticles release toward chronic wound management. Biosens Bioelectron 2025; 268:116860. [PMID: 39489012 DOI: 10.1016/j.bios.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds cause serious health and economic burdens on patients and society. Herein, a wireless and flexible smart wound dressing was developed for matrix metalloproteinase-9 (MMP-9) monitoring and antimicrobial treatment toward chronic wound management. The highly sensitive radio frequency MMP-9 sensor was realized based on a bioresponsive hydrogel with the bioactive peptide sequences. Taking advantage of the flexible inductive-capacitive (LC) circuit and bioresponsive hydrogel, the wireless and wearable smart wound dressing offered an efficient strategy for in-situ wound analysis. Besides, the controlled release of silver nanoparticles (AgNPs) from the degradable hydrogel exhibited significant antimicrobial efficacy against typical bacteria in wound infection including Escherichia coli and Staphylococcus aureus. The analysis of MMP-9 in wound exudate from diabetic foot ulcer (DFU) patients demonstrated good accuracy cross-validated with gold-standard fluorescent measurements, providing great potential for personalized wound management.
Collapse
Affiliation(s)
- Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China
| | - Zhenghan Shi
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Feiyue Fang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Xu
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Li-Ang Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ye Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Meng Jin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Tao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuzhen Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lingkai Su
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hao Liang
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Qingjun Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
2
|
Seijo-Rabina A, Paramés-Estevez S, Concheiro A, Pérez-Muñuzuri A, Alvarez-Lorenzo C. Effect of wound dressing porosity and exudate viscosity on the exudate absorption: In vitro and in silico tests with 3D printed hydrogels. Int J Pharm X 2024; 8:100288. [PMID: 39469079 PMCID: PMC11513483 DOI: 10.1016/j.ijpx.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Exudate absorption is a key parameter for proper wound dressing performance. Unlike standardized tests that consider exudate viscosity close to that of water, patients' exudates vary greatly in composition and, therefore, viscosity. This work aimed to investigate the effects of exudate viscosity and pore size of hydrogel-like dressings on the exudate absorption rate to establish rational criteria for the design of dressings that can meet the personalized needs of wound treatment. Computer-aided design (CAD) was used for Digital Light Processing (DLP) 3D printing of hydrogels with 0%, 30% and 60% porosity. The hydrogels were characterized in detail, and the absorption of two simulated exudate fluids (SEFs) was video-recorded. The same CAD files were used to develop in silico models to simulate exudate uptake rate. Both in vitro data and in silico modeling revealed that low-viscosity SEF penetrates faster through relatively small hydrogel pores (approx. 400 μm) compared to larger pores (approx. 1100 μm) due to capillary forces. However, in vitro vertical uptake took longer than when simulated using CAD design due to lateral fluid absorption through the pore walls in the hydrogel bulk. Distortions of hydrogel channels (micro-CT images) and lateral fluid absorption should be both considered for in silico simulation of SEF penetration. Overall, the results evidenced that porous hydrogel dressings allow rapid penetration (within a few seconds) and hosting of exudates, especially for pore size <1 mm. This information may be useful for design criteria of wound dressings with adequate fluid handling and drug release rate.
Collapse
Affiliation(s)
- Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Paramés-Estevez
- Group of NonLinear Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Pérez-Muñuzuri
- Group of NonLinear Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
McDaniel JC, Kim B, McGowan DR. Methods for sampling wound fluid from venous leg ulcers for molecular analyses: A scoping review. Int Wound J 2023; 20:4175-4192. [PMID: 37455090 PMCID: PMC10681520 DOI: 10.1111/iwj.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Determining the precise role of molecular factors present in venous leg ulcer exudate will expedite the identification of biomarkers that can optimally guide treatment. However, there is now no standardized approach for collecting, processing and storing wound fluid samples for molecular analyses. This scoping review was conducted to integrate and summarize the multiple types of methods being used currently in studies of venous leg ulcers for collecting, processing and storing wound fluid prior to analysis. PubMed, CINAHL, EMBASE and Scopus databases were searched for eligible studies between 2012 and 2022. Nineteen studies were selected for this scoping review. Five primary methodological categories for wound fluid sampling were identified. The most commonly used collection method involved extracting the fluid from various absorbent materials, and the majority of studies centrifuged wound fluid before storing it at ultra-low temperatures. This review found the wound fluid sampling methods among the included studies to be heterogeneous. Moreover, the data revealed no definitive patterns. There is a critical need to develop standardized wound fluid sampling methods in research to facilitate accurate comparisons of biomarker data across studies and a more rapid determination of biomarkers that can most effectively guide delivery of tailored venous leg ulcer treatments.
Collapse
Affiliation(s)
| | - Bohyun Kim
- College of NursingThe Ohio State UniversityColumbusOhioUSA
| | - Dina Rose McGowan
- Clinical Research CenterThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
4
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Kim J, Stechmiller J, Weaver M, Gibson DJ, Horgas A, Kelly DL, Lyon DE. The association of wound factors and symptoms of fatigue and pain with wound healing in chronic venous leg ulcers. Int Wound J 2023; 20:1098-1111. [PMID: 36181308 PMCID: PMC10031222 DOI: 10.1111/iwj.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was: (1) to characterise the association of wound area, wound exudate C-reactive protein (CRP), broad-spectrum matrix metalloprotease protein (MMPs), and symptoms of fatigue and pain in individuals with chronic venous leg ulcers (CVLUs) over time and (2) to identify factors associated with the wound healing trajectory in CVLUs. Seventy four participants with CVLU who received weekly sharp debridement were recruited from a wound care clinic during the 8-week study period. To examine associations among wound CRP, MMPs, pain, fatigue, and wound healing trajectory over time, we calculated Bayes factors (BF) based on a linear mixed model. The mean age of participants was 71.8 (SD = 9.8) and the mean wound area was 2278 mm2 (SD = 7085 mm2 ) at baseline. Higher fatigue was strongly associated with higher MMPs (BF = 9, 95% HDI: [-.05, .43]), lower CRP (BF = 11, 95% HDI: [-.02, .002]), and large areas of wound (BF = 20, 95% HDI: [-.001, .01]). Higher CRP and MMPs activity in wound exudate and higher fatigue were associated with a larger wound area. To facilitate wound healing, clinicians need to utilise the multifactorial approach, which includes wound treatment and management of symptoms such as pain and fatigue, because of the molecular and psycho-behavioural factors involved in wound healing.
Collapse
Affiliation(s)
- Junglyun Kim
- College of Nursing, Chungnam National University College of Nursing, Daejeon, South Korea
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Michael Weaver
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Daniel J Gibson
- University of Alabama Capstone College of Nursing, Tuscaloosa, Alabama, USA
| | - Ann Horgas
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra E Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
6
|
Burian EA, Enevold C, Karlsmark T, Ågren MS. A simplified method for monitoring cytokines in wound fluid. Wound Repair Regen 2023; 31:47-55. [PMID: 36168150 PMCID: PMC10092818 DOI: 10.1111/wrr.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 01/27/2023]
Abstract
Cytokines in wound fluid are used as surrogates for wound healing in clinical research. The current methods used to collect and process wound fluid are noninvasive but not optimal. The aim of this prospective study was to evaluate a method (NovaSwab) by which wound fluid is collected by a surface swab and eluted in a physiological buffer for subsequent cytokine analysis. Wound fluid from 12 patients with leg ulcers was assessed by NovaSwab at the start (Day 0) and at the end of a 23-h collection period of wound fluid retained by foam oblates beneath an occlusive film dressing (Day 1). GM-CSF, IL-1α, IL-1β, IL-6, IL-8, PDGF-AA, TNF-α and VEGF levels were measured by multiplex and electrochemiluminescence assays. IL-1α (2.4×), IL-1β (2.0×) and IL-8 (1.8×) levels increased from Day 0 to Day 1 as detected by NovaSwab, indicating local production of these polypeptides in the wounds. On Day 1, the NovaSwab method yielded higher levels of IL-1α (4.0×), IL-1β (2.7×) and IL-6 (2.7×), and 35% lower levels of VEGF than those in wound fluid accumulated for 23 h in foam oblates (on average, 5 ml of wound fluid). In vitro experiments showed that the investigated cytokines in cell-free wound fluid were recovered in a quantitative manner by the NovaSwab method. We conclude that the method presented here is a promising research tool to study the kinetics of soluble cytokines over the course of wound healing. More studies are needed to determine the interobserver variation and reproducibility of the NovaSwab method.
Collapse
Affiliation(s)
- Ewa Anna Burian
- Department of Dermato-Venereology and Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, University Hospital, Copenhagen, Denmark
| | - Tonny Karlsmark
- Department of Dermato-Venereology and Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus S Ågren
- Department of Dermato-Venereology and Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kieran T Mellody
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Institute for Collaborative Research on Ageing, The University of Manchester, Manchester, UK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Li M, Hu M, Zeng H, Yang B, Zhang Y, Li Z, Lu L, Ming Y. Multifunctional Zinc Oxide/Silver Bimetallic Nanomaterial-Loaded Nanofibers for Enhanced Tissue Regeneration and Wound Healing. J Biomed Nanotechnol 2021; 17:1840-1849. [PMID: 34688329 DOI: 10.1166/jbn.2021.3152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Native skin repair requires wound care products that not only protect the wound from bacterial infection, but also accelerate wound closure and minimize scarring. Nanomaterials have been widely applied for wound healing due to their multifunctional properties. In a previous study, we prepared and characterized electrospinning zinc oxide/silver/polyvinylpyrrolidone/polycaprolactone (ZnO/Ag/PVP/PCL) nanofibers using ZnO and Ag nanoparticles, and evaluated their antibacterial effect in vitro. In this work, further characterization studies were performed, which confirmed that the ZnO/Ag nanoparticles were physically embedded and evenly distributed in the ZnO/Ag/PVP/PCL nanofibers, enabling the sustained release of Ag and Zn. In addition, the bimetallic nanofibers showed satisfactory fluid handling and flexibility. In vivo wound healing and histology studies showed that the ZnO/Ag/PVP/PCL nanofibers had a better anti-inflammatory, skin tissue regeneration, and wound healing effect than monometallic nanofibers or a commercially available wound plaster (Yunnan Baiyao). Therefore, ZnO/Ag/PVP/PCL bimetallic nanofibers may be a safe, efficient biomedical dressing for wound healing.
Collapse
Affiliation(s)
- Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Min Hu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Honglian Zeng
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Bo Yang
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Yi Zhang
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, P. R. China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Laichun Lu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| |
Collapse
|
9
|
Raffetto JD, Ligi D, Maniscalco R, Khalil RA, Mannello F. Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment. J Clin Med 2020; 10:jcm10010029. [PMID: 33374372 PMCID: PMC7795034 DOI: 10.3390/jcm10010029] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50-70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals.
Collapse
Affiliation(s)
- Joseph D. Raffetto
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (J.D.R.); (F.M.)
| | - Daniela Ligi
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Rosanna Maniscalco
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
| | - Raouf A. Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, Unit of Clinical Biochemistry, University Carlo Bo of Urbino, 61029 Urbino, Italy; (D.L.); (R.M.)
- Correspondence: (J.D.R.); (F.M.)
| |
Collapse
|
10
|
Zheng L, Li S, Luo J, Wang X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front Bioeng Biotechnol 2020; 8:593768. [PMID: 33330424 PMCID: PMC7732461 DOI: 10.3389/fbioe.2020.593768] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
At present, there are various wound dressings that can protect the wound from further injury or isolate the external environment in wound treatment. Whereas, infection and slow self-healing still exist in wound healing process. Therefore, it is urgent to develop an ideal wound dressing with good biocompatibility and strong antibacterial activity to promote wound healing. Bacterial cellulose is a kind of promising biopolymer because it can control wound exudate and provide a moist environment for wound healing. However, the lack of antibacterial activity limits its application. In this paper, the advantages of bacterial cellulose as wound dressings were introduced, and the preparation and research progress of bacterial cellulose-based antibacterial composites in recent years were reviewed, including adding antibiotics, combining with inorganic antibacterial agents or organic antibacterial agents. Finally, the existing problems and future development direction of bacterial cellulose-based antibacterial wound dressings were discussed.
Collapse
Affiliation(s)
- Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Jiwen Luo
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Wound Pain and Wound Healing Biomarkers From Wound Exudate: A Scoping Review. J Wound Ostomy Continence Nurs 2020; 47:559-568. [PMID: 33201141 DOI: 10.1097/won.0000000000000703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Effective management of wound pain is essential for optimal wound healing. Nevertheless, the outcomes of wound pain interventions are based on subjective measures, which can prove problematic in patients with cognitive impairment. Identification of biomarkers associated with wound pain and wound healing can be used to more objectively estimate wound pain and contribute to the development of precise management options to reduce wound pain and promote wound healing. This scoping review aimed to identify wound pain and wound healing biomarkers from wound exudates and to describe different wound collection methods to identify these biomarkers. METHODS We searched the literature (PROSPERO database registration number: CRD42018103843) via a scoping review. SEARCH STRATEGY The PubMed database was searched for articles that explored relationships between cutaneous wound pain, wound healing, and biomolecules. Inclusion criteria were articles that reported original data, used adult human samples, and were published in English. FINDINGS Twenty-one articles were retrieved: 17 investigated molecules from wound exudate associated with wound healing status, and 4 reported molecules associated with wound pain. The most frequently observed wound pain biomarkers were proinflammatory cytokines; the most frequently observed wound healing biomarkers were proteases including those in the matrix metalloproteinase family. Six wound exudate collection methods were identified to extract potential wound pain and wound healing biomarkers from wound exudate. IMPLICATIONS The results can guide future wound exudate research to validate these wound pain and wound healing biomarkers and to develop therapies targeting these biomarkers to reduce wound pain and promote wound healing.
Collapse
|