1
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2024:S0022-202X(24)01863-3. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
2
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
3
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
4
|
Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1151-1167. [PMID: 34915757 PMCID: PMC9587785 DOI: 10.1089/ten.teb.2021.0114] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute and chronic cutaneous wounds pose a significant health and economic burden. Cutaneous wound healing is a complex process that occurs in four distinct, yet overlapping, highly coordinated stages: hemostasis, inflammation, proliferation, and remodeling. Postnatal wound healing is reparative, which can lead to the formation of scar tissue. Regenerative wound healing occurs during fetal development and in restricted postnatal tissues. This process can restore the wound to an uninjured state by producing new skin cells from stem cell reservoirs, resulting in healing with minimal or no scarring. Focusing on the pathophysiology of acute burn wounds, this review highlights reparative and regenerative healing mechanisms (including the role of cells, signaling molecules, and the extracellular matrix) and discusses how components of regenerative healing are being used to drive the development of novel approaches and therapeutics aimed at improving clinical outcomes. Important components of regenerative healing, such as stem cells, growth factors, and decellularized dermal matrices, are all being evaluated to recapitulate more closely the natural regenerative healing process.
Collapse
Affiliation(s)
- Adam J Singer
- Department of Emergency Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
5
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
6
|
Douillet C, Nicodeme M, Hermant L, Bergeron V, Guillemot F, Fricain JC, Oliveira H, Garcia M. From local to global matrix organization by fibroblasts: a 4D laser-assisted bioprinting approach. Biofabrication 2021; 14. [PMID: 34875632 DOI: 10.1088/1758-5090/ac40ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022]
Abstract
Fibroblasts and myofibroblasts play a central role in skin homeostasis through dermal organization and maintenance. Nonetheless, the dynamic interactions between (myo)fibroblasts and the extracellular matrix (ECM) remain poorly exploited in skin repair strategies. Indeed, there is still an unmet need for soft tissue models allowing to study the spatial-temporal remodeling properties of (myo)fibroblasts. In vivo, wound healing studies in animals are limited by species specificity. In vitro, most models rely on collagen gels reorganized by randomly distributed fibroblasts. But biofabrication technologies have significantly evolved over the past ten years. High-resolution bioprinting now allows to investigate various cellular micropatterns and the emergent tissue organizations over time. In order to harness the full dynamic properties of cells and active biomaterials, it is essential to consider "time" as the 4th dimension in soft tissue design. Following this 4D bioprinting approach, we aimed to develop a novel model that could replicate fibroblast dynamic remodeling in vitro. For this purpose, (myo)fibroblasts were patterned on collagen gels with laser-assisted bioprinting (LAB) to study the generated matrix deformations and reorganizations. First, distinct populations, mainly composed of fibroblasts or myofibroblasts, were established in vitro to account for the variety of fibroblastic remodeling properties. Then, LAB was used to organize both populations on collagen gels in even isotropic patterns with high resolution, high density and high viability. With maturation, bioprinted patterns of fibroblasts and myofibroblasts reorganized into dispersed or aggregated cells, respectively. Stress-release contraction assays revealed that these phenotype-specific pattern maturations were associated with distinct lattice tension states. The two populations were then patterned in anisotropic rows in order to direct the cell-generated deformations and to orient global matrix remodeling. Only maturation of anisotropic fibroblast patterns, but not myofibroblasts, resulted in collagen anisotropic reorganizations both at tissue-scale, with lattice contraction, and at microscale, with embedded microbead displacements. Following a 4D bioprinting approach, LAB patterning enabled to elicit and orient the dynamic matrix remodeling mechanisms of distinct fibroblastic populations and organizations on collagen. For future studies, this method provides a new versatile tool to investigate in vitro dermal organizations and properties, processes of remodeling in healing, and new treatment opportunities.
Collapse
Affiliation(s)
- Camille Douillet
- Bioingénierie tissulaire, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, Aquitaine, 33076, FRANCE
| | - Marc Nicodeme
- Poietis, 27 Allée Charles Darwin, Pessac, 33600, FRANCE
| | - Loïc Hermant
- Poietis, 27 Allée Charles Darwin, Pessac, 33600, FRANCE
| | | | | | - Jean-Christophe Fricain
- Bioingénierie tissulaire, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, FRANCE
| | - Hugo Oliveira
- Bioingénierie tissulaire, Université de Bordeaux, 146 rue Léo Saignat, Bordeaux, 33076, FRANCE
| | - Mikael Garcia
- Poietis, 27 Allée Charles Darwin, Pessac, 33600, FRANCE
| |
Collapse
|
7
|
Yang JX, Li M, Hu X, Lu JC, Wang Q, Lu SY, Gao F, Jin SW, Zheng SX. Protectin DX promotes epithelial injury repair and inhibits fibroproliferation partly via ALX/PI3K signalling pathway. J Cell Mol Med 2020; 24:14001-14012. [PMID: 33098250 PMCID: PMC7754026 DOI: 10.1111/jcmm.16011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) is histologically characterized by extensive alveolar barrier disruption and excessive fibroproliferation responses. Protectin DX (PDX) displays anti‐inflammatory and potent inflammation pro‐resolving actions. We sought to investigate whether PDX attenuates LPS (lipopolysaccharide)‐induced lung injury via modulating epithelial cell injury repair, apoptosis and fibroblasts activation. In vivo, PDX was administered intraperitoneally (IP) with 200 ng/per mouse after intratracheal injection of LPS, which remarkedly stimulated proliferation of type II alveolar epithelial cells (AT II cells), reduced the apoptosis of AT II cells, which attenuated lung injury induced by LPS. Moreover, primary type II alveolar cells were isolated and cultured to assess the effects of PDX on wound repair, apoptosis, proliferation and transdifferentiation in vitro. We also investigated the effects of PDX on primary rat lung fibroblast proliferation and myofibroblast differentiation. Our result suggests PDX promotes primary AT II cells wound closure by inducing the proliferation of AT II cells and reducing the apoptosis of AT II cells induced by LPS, and promotes AT II cells transdifferentiation. Furthermore, PDX inhibits transforming growth factor‐β1 (TGF‐β1) induced fibroproliferation, fibroblast collagen production and myofibroblast transformation. Furthermore, the effects of PDX on epithelial wound healing and proliferation, fibroblast proliferation and activation partly via the ALX/ PI3K signalling pathway. These data present identify a new mechanism of PDX which targets the airway epithelial cell and fibroproliferation are potential for treatment of ARDS/ALI.
Collapse
Affiliation(s)
- Jing-Xiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jia-Chao Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shi-Yue Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
8
|
Data on the mechanobiological differences in the transcriptomes of human fetal and adult dermal fibroblasts in response to extracellular matrix rigidity. Data Brief 2019; 26:104519. [PMID: 31667282 PMCID: PMC6811905 DOI: 10.1016/j.dib.2019.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
Fetal skin is known to proceed through the wound healing process without the formation of scar tissue but rather via regeneration. Fetal dermal fibroblasts have emerged as a significant driving force in this regenerative response due to their unique phenotypic characteristics including our recent finding of an attenuated contractile response to extracellular matrix (ECM) rigidity that normally contributes to myofibroblast differentiation and scar formation. We provide data here that these mechanobiological differences in fetal dermal fibroblasts also extend to their genetic profile in which we found 353 differentially expressed genes when compared to adult dermal fibroblasts. These data are related to the research article entitled “The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation” [1].
Collapse
|
9
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|