1
|
Choi Y, Jang HS, Shim J, Yeo E, Kim MH, Noh H, Oh S, Park JH, Lee D, Lee JH. 3D keloid spheroid model: Development and application for personalized drug response prediction. Commun Biol 2024; 7:1470. [PMID: 39516553 PMCID: PMC11549223 DOI: 10.1038/s42003-024-07194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Research on keloid is limited by the lack of proper in vitro and animal model reflecting in vivo status. Based on heterogeneity of keloid and important role of endothelial cells in its pathogenesis, a novel 3D in vitro keloid spheroid prepared with keloid fibroblasts and endothelial cells was evaluated in this study. Commercial cell lines of keloid fibroblasts and endothelial cells were used at various cellular ratios to generate keloid spheroids to determine the optimal condition. Keloid spheroids from three keloid patients were also made and their usefulness as in vitro models, including their responses to drugs, were assessed. Spheroids with higher endothelial cell proportions exhibited increased viability and propagation ability. Patient-derived keloid spheroids showed heterogeneity which might reflect individual clinical conditions. The optimal ratio of fibroblasts to endothelial cells was determined to be 4:1 for keloid spheroids based on gene expression and viability analyses. Patient-derived keloid spheroid showed better keloidal changes in genetic expressions than 2D monolayer culture. Spheroids exhibited varied responses and resistance to each drug used for keloids, depending on the cell type used. 3D keloid spheroids might provide an effective in vitro model for investigating disease pathogenesis and appropriate treatment modalities for future precision medicine.
Collapse
Affiliation(s)
- YoungHwan Choi
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyung-Suk Jang
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Min-Hee Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sejin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dirand Z, Tissot M, Chatelain B, Viennet C, Rolin G. Is Spheroid a Relevant Model to Address Fibrogenesis in Keloid Research? Biomedicines 2023; 11:2350. [PMID: 37760792 PMCID: PMC10526056 DOI: 10.3390/biomedicines11092350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Keloid refers to a fibro-proliferative disorder characterized by an accumulation of extracellular matrix at the dermis level, overgrowing beyond the initial wound and forming tumor-like nodule areas. The absence of treatment for keloid is clearly related to limited knowledge about keloid etiology. In vitro, keloids were classically studied through fibroblasts monolayer culture, far from keloid in vivo complexity. Today, cell aggregates cultured as 3D spheroid have gained in popularity as new tools to mimic tissue in vitro. However, no previously published works on spheroids have specifically focused on keloids yet. Thus, we hypothesized that spheroids made of keloid fibroblasts (KFs) could be used to model fibrogenesis in vitro. Our objective was to qualify spheroids made from KFs and cultured in a basal or pro-fibrotic environment (+TGF-β1). As major parameters for fibrogenesis assessment, we evaluated apoptosis, myofibroblast differentiation and response to TGF-β1, extracellular matrix (ECM) synthesis, and ECM-related genes regulation in KFs spheroids. We surprisingly observed that fibrogenic features of KFs are strongly downregulated when cells are cultured in 3D. In conclusion, we believe that spheroid is not the most appropriate model to address fibrogenesis in keloid, but it constitutes an efficient model to study the deactivation of fibrotic cells.
Collapse
Affiliation(s)
- Zélie Dirand
- Université de Franche-Comté, Sciences Médicales et Pharmaceutiques, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; (Z.D.)
| | - Marion Tissot
- Université de Franche-Comté, Sciences Médicales et Pharmaceutiques, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; (Z.D.)
| | - Brice Chatelain
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, 25000 Besançon, France
| | - Céline Viennet
- Université de Franche-Comté, Sciences Médicales et Pharmaceutiques, EFS, INSERM, UMR RIGHT, 25000 Besançon, France; (Z.D.)
| | - Gwenaël Rolin
- Université de Franche-Comté, Sciences Médicales et Pharmaceutiques, CHU Besançon EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| |
Collapse
|
3
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Neves LMG, Wilgus TA, Bayat A. In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models. Adv Wound Care (New Rochelle) 2023; 12:97-116. [PMID: 34915768 DOI: 10.1089/wound.2021.0139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: The cutaneous repair process naturally results in different types of scarring that are classified as normal or pathological. Affected individuals are often affected from an esthetic, physical (functional), and psychosocial perspective. The distinct nature of scarring in humans, particularly the formation of pathological scars, makes the study of skin scarring a challenge for researchers in this area. Several established experimental models exist for studying scar formation. However, the increasing development and validation of newly emerging models have made it possible to carry out studies focused on different variables that influence this unique process. Recent Advances: Experimental models such as in vitro, ex vivo, and in vivo models have obtained different degrees of success in the reproduction of the scar formation in its native milieu and true environment. These models also differ in their ability to elucidate the molecular, cellular, and structural mechanisms involved in scarring, as well as for testing new agents and approaches for therapies. The models reviewed here, including cells derived from human skin and in vivo animal models, have contributed to the advancement of skin scarring research. Critical Issues and Future Directions: The absence of experimental models that faithfully reproduce the typical characteristics of the different types of human skin scars makes the improvement of validated models and the establishment of new ones a critical unmet need. The fields of wound healing research combined with tissue engineering have offered newer alternatives for experimental studies with the potential to provide clinically useful knowledge about scar formation.
Collapse
Affiliation(s)
- Lia M G Neves
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
| | - Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Centre for Dermatology Research, Wound Healing Theme, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom.,Medical Research Council (MRC) Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
He Y, Zhang S, Bao W, Xue Y, Yin B, Cheng X, Zhang Z, Jia C. An improved explants culture method: Sustainable isolation of keloid fibroblasts with primary characteristics. J Cosmet Dermatol 2022; 21:7131-7139. [PMID: 36170348 DOI: 10.1111/jocd.15416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Keloid (KD) is a complex fibroproliferative disease, but the exact mechanisms underlying keloid pathogenesis remain to be elucidated. The primary keloid fibroblasts (KFs) culture in vitro has always been a fundamental measure to study the pathogenesis of keloid. However, the traditional primary culture methods have some limitations, such as a long culture cycle, low specimen utilization rate and so on. AIMS Improve the keloid explants culture method sts. MATERIALS & METHODS We proposed an improved new "explants multiple culture method"-reusing keloid explants for primary culture and harvesting the primary KFs in specific culture times. Meanwhile, the purity, proliferation, apoptosis, migration, invasion, extracellular matrix synthesis, and some fibrosis and inflammation-related proteins of KFs obtained from the first, fifth, and tenth explants cultures were detected. RESULTS The results showed that the culture cycle of this new method (Cell Isolation: 2.67 ± 0.86 days, Explants removal: 8.83 ± 0.79 days, Cell Passage: 15.17 ± 1.39 days) was significantly shorter than that of the traditional method (Cell Isolation: 8.67 ± 1.84 days, Explants removal: 17.67 ± 2.17 days, Cell Passage: 22.67 ± 1.84 days). No significant difference was observed between the phenotypes of the fibroblasts obtained from the first explants culture and cultures less than 10 times (p > 0.05). DISSCUSSION Taken together, this study provides an effective method for the primary culture of KFs with a higher specimen utilization rate and shorter culture cycle. CONCLUSION This method breaks through the limitation of traditional explants culture requiring a large number of keloid specimens and provides a rich source of KFs for the study of keloid.
Collapse
Affiliation(s)
- Yan He
- School of Medicine, Xiamen University, Xiamen, China
| | | | - Wu Bao
- School of Medicine, Xiamen University, Xiamen, China
| | - Yi Xue
- School of Medicine, Xiamen University, Xiamen, China
| | - Bin Yin
- School of Medicine, Xiamen University, Xiamen, China
| | - Xialin Cheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Zexin Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Chiyu Jia
- Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C. Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol 2022; 101:151253. [PMID: 35785635 DOI: 10.1016/j.ejcb.2022.151253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell-ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell-ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
7
|
Norouzi-Barough L, Bayat A. Validation strategies for identifying drug targets in dermal fibrotic disorders. Drug Discov Today 2021; 26:2474-2485. [PMID: 34229083 DOI: 10.1016/j.drudis.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Fibrotic skin disorders, such as keloid disease (KD), are common clinically challenging disorders with unknown etiopathogenesis and ill-defined treatment strategies that affect millions of people worldwide. Thus, there is an urgent need to discover novel therapeutics. The validation of potential drug targets is an obligatory step in discovering and developing new therapeutic agents for the successful treatment of dermal fibrotic conditions, such as KD. The integration of multi-omics data with traditional and modern technological approaches, such as RNA interference (RNAi) and genome-editing tools, would provide unique opportunities to identify and validate novel targets in KD during early drug development. Thus, in this review, we summarize the current and emerging drug discovery process with a focus on validation strategies of potential drug targets identified in dermal fibrosis.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Medical Research Council-Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Wang ZH, Sun XY, Zhang JJ, Giampieri F, Jiang CJ, Feng TT, Wang ZW, Chen RY, Battino M, Zhou Y. A six-herb Chinese medicine composition ointment as a promising candidate for treatment of hypertrophic scars. CHINESE HERBAL MEDICINES 2021; 13:210-220. [PMID: 36117509 PMCID: PMC9476741 DOI: 10.1016/j.chmed.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022] Open
Abstract
Objective To study the anti-hypertrophic scar effect of the six-herb Chinese medicine composition (SCMC) ointment on the rabbit ear hypertrophic scar models. Methods The optimal formulation of SCMC ointment matrix was screened by the orthogonal designs and a series of evaluation tests. The SCMC ointment was prepared through emulsifying method. The rabbit ear hypertrophic scar models were established and used to investigate the anti-hypertrophic scar effect of SCMC ointment. Results Our results demonstrated that all the quality control indications of the SCMC ointment met the requirements. Anti-hypertrophic scar activity results showed that all the rabbit ear scar tissues appeared different degrees of shrink and fading, and took an unobvious but palpable shift from hard to soft texture with the low, middle and high concentration SCMC ointments treatments in vivo. Additionally, on 21st day the scar area and thickness in different concentrations of SCMC ointment groups were significantly reduced than control group, in a concentration-dependent manner. The immunohistochemical results also indicated that the SCMC ointment had good anti-hypertrophic scar properties and could inhibit hypertrophic scar formation. Conclusion The SCMC ointment could improve the blood circulation condition of hypertrophic scar tissues. Our research has demonstrated the Chinese medicine composition ointment with good anti-hypertrophic scar properties that could be used to treat hypertrophic scars. Meanwhile, it provides a theoretical basis for further clinical application.
Collapse
Affiliation(s)
- Zu-hua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xue-yan Sun
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jiao-jiao Zhang
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
- School of Medicine, Southern Medical University, Guangzhou 510091, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cheng-ju Jiang
- QianDongNan Vocational & Technical College for Nationalities, Kaili 556000, China
| | - Ting-ting Feng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhi-wei Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Rong-yi Chen
- School of Medicine, Southern Medical University, Guangzhou 510091, China
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Corresponding authors at: Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Corresponding authors at: Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
9
|
Experimental Study on Blue Light Interaction with Human Keloid-Derived Fibroblasts. Biomedicines 2020; 8:biomedicines8120573. [PMID: 33291338 PMCID: PMC7762279 DOI: 10.3390/biomedicines8120573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023] Open
Abstract
Keloids are an exuberant response to wound healing, characterized by an exaggerated synthesis of collagen, probably due to the increase of fibroblasts activity and to the reduction of their apoptosis rate: currently no standard treatments or pharmacological therapies are able to prevent keloid recurrence. To reach this goal, in recent years some physical treatments have been proposed, and among them the PhotoBioModulation therapy (PBM). This work analyses the effects of a blue LED light irradiation (410-430 nm, 0.69 W/cm2 power density) on human fibroblasts, isolated from both keloids and perilesional tissues. Different light doses (3.43-6.87-13.7-20.6-30.9 and 41.2 J/cm2) were tested. Biochemical assays and specific staining were used to assess cell metabolism, proliferation and viability. Micro-Raman spectroscopy was used to explore direct effects of the blue LED light on the Cytochrome C (Cyt C) oxidase. We also investigated the effects of the irradiation on ionic membrane currents by patch-clamp recordings. Our results showed that the blue LED light can modulate cell metabolism and proliferation, with a dose-dependent behavior and that these effects persist at least till 48 h after treatment. Furthermore, we demonstrated that the highest fluence value can reduce cell viability 24 h after irradiation in keloid-derived fibroblasts, while the same effect is observed 48 h after treatment in perilesional fibroblasts. Electrophysiological recordings showed that the medium dose (20.6 J/cm2) of blue LED light induces an enhancement of voltage-dependent outward currents elicited by a depolarizing ramp protocol. Overall, these data demonstrate the potentials that PBM shows as an innovative and minimally-invasive approach in the management of hypertrophic scars and keloids, in association with current treatments.
Collapse
|
10
|
Tang H, Chen Q, Yu W, Zhao T. MiR-4328 inhibits proliferation, metastasis and induces apoptosis in keloid fibroblasts by targeting BCL2 expression. Open Life Sci 2020; 15:638-646. [PMID: 33817252 PMCID: PMC7747497 DOI: 10.1515/biol-2020-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Keloids are considered to be a type of benign tumor. MicroRNAs have been reported to be involved in the formation and growth of keloids. MicroRNA-4328 (miR-4328) was found to be abnormally expressed in keloids, while the role and the detailed molecular mechanism of miR-4328 in keloids remain unclear. The expression of miR-4328 and B-cell lymphoma 2 (BCL2) mRNA was detected by qRT-PCR. The proliferation, migration, invasion and apoptosis of keloid fibroblasts (KFs) was examined using Cell Counting Kit-8 assay, transwell assay or flow cytometry, respectively. Western blot was used to detect the level of proliferating cell nuclear antigen, cleaved-caspase 3, collagen I, collagen III and BCL2 protein. The interaction between miR-4328 and BCL2 was confirmed by luciferase reporter analyses. It was observed that miR-4328 was down-regulated in keloid tissues and fibroblasts, and miR-4328 restoration mediated the inhibition of proliferation, metastasis, collagen synthesis and the promotion of apoptosis in KFs. BCL2 was up-regulated in keloid tissues and fibroblasts, and BCL2 knockdown promoted the deterioration of KFs. In addition, BCL2 was confirmed to be a target of miR-4328, and the rescue experiment indicated that the inhibitory action of miR-4328 on keloid fibroblast progression was reversed by BCL2 overexpression. Thus, our results demonstrated that miR-4328 restrained the deterioration of KFs by targeting BCL2, which sheds new light on miR-4328 as a promising target for keloid development and therapeutic.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Qi Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Wenyuan Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| | - Tianlan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Suzhou University, 215000, Suzhou, China
| |
Collapse
|
11
|
Aoki M, Matsumoto NM, Dohi T, Kuwahawa H, Akaishi S, Okubo Y, Ogawa R, Yamamoto H, Takabe K. Direct Delivery of Apatite Nanoparticle-Encapsulated siRNA Targeting TIMP-1 for Intractable Abnormal Scars. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:50-61. [PMID: 32911344 PMCID: PMC7486579 DOI: 10.1016/j.omtn.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Hypertrophic scars (HSs) and keloids are histologically characterized by excessive extracellular matrix (ECM) deposition. ECM deposition depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). TIMP-1 has been linked to ECM degradation and is therefore a promising therapeutic strategy. In this study, we generated super carbonate apatite (sCA) nanoparticle-encapsulated TIMP-1 small interfering RNA (siRNA) (siTIMP1) preparations and examined the effect of local injections on mouse HSs and on ex vivo-cultured keloids. The sCA-siTIMP1 injections significantly reduced scar formation, scar cross-sectional areas, collagen densities, and collagen types I and III levels in the lesions. None of the mice died or exhibited abnormal endpoints. Apatite accumulation was not detected in the other organs. In an ex vivo keloid tissue culture system, sCA-siTIMP1 injections reduced the thickness and complexity of collagen bundles. Our results showed that topical sCA-siTIMP1 injections during mechanical stress-induced HS development reduced scar size. When keloids were injected three times with sCA-siTIMP1 during 6 days, keloidal collagen levels decreased substantially. Accordingly, sCA-siRNA delivery may be an effective approach for keloid treatment, and further investigations are needed to enable its practical use.
Collapse
Affiliation(s)
- Masayo Aoki
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.
| | - Noriko M Matsumoto
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Teruyuki Dohi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hiroaki Kuwahawa
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Satoshi Akaishi
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | | | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
12
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Sharma JR, Lebeko M, Kidzeru EB, Khumalo NP, Bayat A. In Vitro and Ex Vivo Models for Functional Testing of Therapeutic Anti-scarring Drug Targets in Keloids. Adv Wound Care (New Rochelle) 2019; 8:655-670. [PMID: 31827980 PMCID: PMC6904937 DOI: 10.1089/wound.2019.1040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
Significance: Keloids are benign fibro-proliferative raised dermal lesions that spread beyond the original borders of the wound, continue to grow, rarely regress, and are the most common in pigmented individuals after an abnormal wound healing response. The current treatment failure and respective challenges involved highlighting the underlying issue that the etiopathogenesis of keloids is still not well understood. Disease models are required to better understand the disease pathogenesis. It is not possible to establish keloids in animals because of the uniqueness of this disease to human skin. To address this challenge, along these lines, non-animal reproducible models are vital in investigating molecular mechanisms of keloid pathogenesis and therapeutics development. Recent Advances: Various non-animal models have been developed to better understand the molecular mechanisms involved in keloid scarring and aid in identifying and evaluating the therapeutic potential of novel drug candidates. In this scenario, the current review aims at describing in vitro monocultures, co-cultures, organotypic cultures, and ex vivo whole skin keloid tissue organ culture models. Critical Issues and Future Directions: Current treatment options for keloids are far from securing a cure or preventing disease recurrence. Identifying universally accepted effective therapy for keloids has been hampered by the absence of appropriate disease model systems. Animal models do not accurately mimic the disease, thus non-animal model systems are pivotal in keloid research. The use of these models is essential not only for a better understanding of disease biology but also for identifying and evaluating novel drug targets.
Collapse
Affiliation(s)
- Jyoti R. Sharma
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Maribanyana Lebeko
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Elvis B. Kidzeru
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Centre for Medical Research, Institute of Medical Research and Medical Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Nonhlanhla P. Khumalo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Plastic and Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|