1
|
Merrick BA, Martin NP, Brooks AM, Foley JF, Dunlap PE, Ramaiahgari S, Fannin RD, Gerrish KE. Insights into Repeated Renal Injury Using RNA-Seq with Two New RPTEC Cell Lines. Int J Mol Sci 2023; 24:14228. [PMID: 37762531 PMCID: PMC10531624 DOI: 10.3390/ijms241814228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Renal proximal tubule epithelial cells (RPTECs) are a primary site for kidney injury. We created two RPTEC lines from CD-1 mice immortalized with hTERT (human telomerase reverse transcriptase) or SV40 LgT antigen (Simian Virus 40 Large T antigen). Our hypothesis was that low-level, repeated exposure to subcytotoxic levels of 0.25-2.5 μM cisplatin (CisPt) or 12.5-100 μM aflatoxin B1 (AFB1) would activate distinctive genes and pathways in these two differently immortalized cell lines. RNA-seq showed only LgT cells responded to AFB1 with 1139 differentially expressed genes (DEGs) at 72 h. The data suggested that AFB1 had direct nephrotoxic properties on the LgT cells. However, both the cell lines responded to 2.5 μM CisPt from 3 to 96 h expressing 2000-5000 total DEGs. For CisPt, the findings indicated a coordinated transcriptional program of injury signals and repair from the expression of immune receptors with cytokine and chemokine secretion for leukocyte recruitment; robust expression of synaptic and substrate adhesion molecules (SAMs) facilitating the expression of neural and hormonal receptors, ion channels/transporters, and trophic factors; and the expression of nephrogenesis transcription factors. Pathway analysis supported the concept of a renal repair transcriptome. In summary, these cell lines provide in vitro models for the improved understanding of repeated renal injury and repair mechanisms. High-throughput screening against toxicant libraries should provide a wider perspective of their capabilities in nephrotoxicity.
Collapse
Affiliation(s)
- B. Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Negin P. Martin
- Viral Vector Core, Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Julie F. Foley
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Paul E. Dunlap
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Sreenivasa Ramaiahgari
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (J.F.F.); (P.E.D.); (S.R.)
| | - Rick D. Fannin
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| | - Kevin E. Gerrish
- Molecular Genomics Core Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (R.D.F.)
| |
Collapse
|
2
|
Zhang Z, Ni Z, Huang Y, Zhang H, Hu Z, Ye D, Shen Y, Jia M, Shi K, Zhu G, He J, Xu L, Shi F, Yu H, Zhuang L, Wang H. Barnacle-Inspired Wet Tissue Adhesive Hydrogels with Inherent Antibacterial Properties for Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37214-37231. [PMID: 37498537 DOI: 10.1021/acsami.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Currently, antibiotics are the most common treatment for bacterial infections in clinical practice. However, with the abuse of antibiotics and the emergence of drug-resistant bacteria, the use of antibiotics has faced an unprecedented challenge. It is imminent to develop nonantibiotic antimicrobial agents. Based on the cation-π structure of barnacle cement protein, a polyphosphazene-based polymer poly[(N,N-dimethylethylenediamine)-g-(N,N,N,N-dimethylaminoethyl p-ammonium bromide (ammonium bromide)-g-(N,N,N,N-dimethylaminoethyl acetate ethylammonium bromide)] (PZBA) with potential adhesion and inherent antibacterial properties was synthesized, and a series of injectable antibacterial adhesive hydrogels (PZBA-PVA) were prepared by cross-linking with poly(vinyl alcohol) (PVA). PZBA-PVA hydrogels showed good biocompatibility, and the antibacterial rate of the best-performed hydrogel reached 99.81 ± 0.04% and 98.80 ± 2.16% against Staphylococcus aureus and Escherichia coli within 0.5 h in vitro, respectively. In the infected wound model, the healing rate of the PZBA-PVA-treated group was significantly higher than that of the Tegaderm film group due to the fact that the hydrogel suppressed inflammatory responses and modulated the infiltration of immune cells. Moreover, the wound healing mechanism of the PZBA-PVA hydrogel was further evaluated by real-time polymerase chain reaction and total RNA sequencing. The results indicated that the process of hemostasis and tissue development was prompted and the inflammatory and immune responses were suppressed to accelerate wound healing. Overall, the PZBA-PVA hydrogel is shown to have the potential for infected wound healing application.
Collapse
Affiliation(s)
- Zhenning Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Veterinary Teaching Hospital, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Hua Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhewei Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Di Ye
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yihua Shen
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Mengyan Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kehang Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ge Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Veterinary Teaching Hospital, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jin He
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lichang Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Veterinary Teaching Hospital, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Veterinary Teaching Hospital, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Veterinary Teaching Hospital, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
4
|
Structure-guided unlocking of Na X reveals a non-selective tetrodotoxin-sensitive cation channel. Nat Commun 2022; 13:1416. [PMID: 35301303 PMCID: PMC8931054 DOI: 10.1038/s41467-022-28984-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Unlike classical voltage-gated sodium (NaV) channels, NaX has been characterized as a voltage-insensitive, tetrodotoxin-resistant, sodium (Na+)-activated channel involved in regulating Na+ homeostasis. However, NaX remains refractory to functional characterization in traditional heterologous systems. Here, to gain insight into its atypical physiology, we determine structures of the human NaX channel in complex with the auxiliary β3-subunit. NaX reveals structural alterations within the selectivity filter, voltage sensor-like domains, and pore module. We do not identify an extracellular Na+-sensor or any evidence for a Na+-based activation mechanism in NaX. Instead, the S6-gate remains closed, membrane lipids fill the central cavity, and the domain III-IV linker restricts S6-dilation. We use protein engineering to identify three pore-wetting mutations targeting the hydrophobic S6-gate that unlock a robust voltage-insensitive leak conductance. This constitutively active NaX-QTT channel construct is non-selective among monovalent cations, inhibited by extracellular calcium, and sensitive to classical NaV channel blockers, including tetrodotoxin. Our findings highlight a functional diversity across the NaV channel scaffold, reshape our understanding of NaX physiology, and provide a template to demystify recalcitrant ion channels.
Collapse
|
6
|
Dolivo D, Rodrigues A, Sun L, Li Y, Hou C, Galiano R, Hong SJ, Mustoe T. The Na x (SCN7A) channel: an atypical regulator of tissue homeostasis and disease. Cell Mol Life Sci 2021; 78:5469-5488. [PMID: 34100980 PMCID: PMC11072345 DOI: 10.1007/s00018-021-03854-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
Abstract
Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Adrian Rodrigues
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Lauren Sun
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Yingxing Li
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Chun Hou
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
- Department of Plastic and Cosmetic Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robert Galiano
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA
| | - Seok Jong Hong
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 300 E. Superior St., Chicago, IL, 60611, USA.
| | - Thomas Mustoe
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, USA.
- , 737 N. Michigan Ave., Chicago, IL, 60611, USA.
| |
Collapse
|