1
|
Tang Y, Zhao R, Yi M, Ge Z, Wang D, Wang G, Deng X. Multifunctional Hydrogel Enhances Inflammatory Control, Antimicrobial Activity, and Oxygenation to Promote Healing in Infectious Wounds. Biomacromolecules 2024; 25:2423-2437. [PMID: 38457661 DOI: 10.1021/acs.biomac.3c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Chronic infected wounds often fail to heal through normal repair mechanisms, and the persistent response of reactive oxygen species (ROS) and inflammation is a major contributing factor to the difficulty in their healing. In this context, we developed an ROS-responsive injectable hydrogel. This hydrogel is composed of ε-polylysine grafted (EPL) with caffeic acid (CA) and hyaluronic acid (HA) grafted with phenylboronic acid (PBA). Before the gelation process, a mixture CaO2@Cur-PDA (CCP) consisting of calcium peroxide (CaO2) coated with polydopamine (PDA) and curcumin (Cur) is embedded into the hydrogel. Under the conditions of chronic refractory wound environments, the hydrogel gradually dissociates. HA mimics the function of the extracellular matrix, while the released caffeic acid-grafted ε-polylysine (CE) effectively eliminates bacteria in the wound vicinity. Additionally, released CA also clears ROS and influences macrophage polarization. Subsequently, CCP further decomposes, releasing Cur, which promotes angiogenesis. This multifunctional hydrogel accelerates the repair of diabetic skin wounds infected with Staphylococcus aureus in vivo and holds promise as a candidate dressing for the healing of chronic refractory wounds.
Collapse
Affiliation(s)
- Yunfeng Tang
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Renliang Zhao
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Yi
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanglin Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangtian Deng
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen-Generating Hydrogels as Oxygenation Therapy for Accelerated Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2302391. [PMID: 37899694 DOI: 10.1002/adhm.202302391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Hypoxia in chronic wounds impairs the activities of reparative cells, resulting in tissue necrosis, bacterial infections, decreased angiogenesis, and delayed wound healing. To achieve effective oxygenation therapy and restore oxygen homeostasis, oxygen-generating hydrogels based on different oxygen sources have been developed to release dissolved oxygen in the wound bed, which not only alleviate hypoxia, but also accelerate chronic wound healing. This review first discusses the vital role of oxygen and hypoxia in the wound healing process. The advancements in oxygen-generating hydrogels, which produce oxygen through the decomposition of hydrogen peroxide, metal peroxides, glucose-activated cascade reactions, and photosynthesis of algae microorganisms for chronic wound healing, are discussed and summarized. The therapeutic effects and challenges of using oxygen-generating hydrogels for the clinical treatment of chronic wounds are concluded and prospected.
Collapse
Affiliation(s)
- Zhixuan Yang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yehao Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyan Quanji
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengfeng Cai
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Kakiuchi K, Kozuka T, Mase N, Miyasaka T, Harii N, Takeoka S. Do Ultrafine Bubbles Work as Oxygen Carriers? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1354-1363. [PMID: 36649623 DOI: 10.1021/acs.langmuir.2c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fine bubbles (FBs) are bubbles with sizes less than 100 μm and are divided into ultrafine bubbles (UFBs, < 1 μm) and microbubbles (MBs, 1-100 μm) depending on their size. Although FB aeration is known as a more efficient way than macrobubble aeration to increase the oxygen level in unoxygenated water, few reports have demonstrated whether dispersed UFBs work as oxygen carriers or not. Furthermore, oxygen supersaturation is one of the attractive characteristics of FB dispersion, but the reason is yet to be revealed. In this study, we evaluated the relationship between the FBs, especially UFB concentration, and oxygen content in several situations to reveal the two questions. The FB concentration and oxygen content were examined using particle analyzers and our developed oxygen measurement method, which can measure the oxygen content in FB dispersion, respectively. First, in the evaluations of the oxygen dispersion from UFBs with respect to the surrounding oxygen level, UFBs did become neither small nor diminish even in degassed water. Second, the changes in UFBs and oxygen content upon storage temperature and the existence of a lid during storage were evaluated, and there was no correlation between them. It means UFBs contribute little to the oxygen content in UFB dispersion. Furthermore, the oxygen content in the UFB dispersion decreased over time identically as that of the oxygen-supersaturated water with little UFBs. Third, we evaluated the relationship between FB concentration and oxygen content during FB generation by measuring them simultaneously. The results showed that dispersed MB and UFB concentrations did not account for the supersaturation of the FB dispersion. From the result, it was revealed that 100-200 nm of UFBs themselves did not work as oxygen carriers, and the oxygen supersaturation in FB dispersions was due to the supersaturated state of dissolved oxygen that was prepared during the FB generation process.
Collapse
Affiliation(s)
- Kenta Kakiuchi
- Faculty of Science and Engineering, Waseda University (TWIns), 162-8480Tokyo, Japan
| | - Tomoki Kozuka
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
| | - Nobuyuki Mase
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 432-8561Shizuoka, Japan
| | - Takehiro Miyasaka
- Department of Human Environmental Science, Shonan Institute of Technology, 251-8511Fujisawa, Kanagawa, Japan
| | - Norikazu Harii
- Department of Community and Family Medicine, Faculty of Medicine, University of Yamanashi, 409-3898Yamanashi, Japan
| | - Shinji Takeoka
- Faculty of Science and Engineering, Waseda University (TWIns), 162-8480Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, 169-8555Tokyo, Japan
| |
Collapse
|
4
|
Huang F, Lu X, Yang Y, Yang Y, Li Y, Kuai L, Li B, Dong H, Shi J. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203308. [PMID: 36424137 PMCID: PMC9839871 DOI: 10.1002/advs.202203308] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/02/2022] [Indexed: 06/04/2023]
Abstract
Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of "DFU nanomedicine". However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state-of-the-art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully.
Collapse
Affiliation(s)
- Fang Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| | - Xiangyu Lu
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yushan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Yongyong Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
| | - Le Kuai
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Bin Li
- Shanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghai200443China
- Department of DermatologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghai200437China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and RegenerationMinistry of EducationTongji HospitalSchool of MedicineTongji University389 Xincun RoadShanghai200065China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineThe Institute for Biomedical Engineering and Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050China
| |
Collapse
|
5
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Extracellular Vesicles in Corneal Fibrosis/Scarring. Int J Mol Sci 2022; 23:ijms23115921. [PMID: 35682600 PMCID: PMC9180085 DOI: 10.3390/ijms23115921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
Communication between cells and the microenvironment is a complex, yet crucial, element in the development and progression of varied physiological and pathological processes. Accumulating evidence in different disease models highlights roles of extracellular vesicles (EVs), either in modulating cell signaling paracrine mechanism(s) or harnessing their therapeutic moiety. Of interest, the human cornea functions as a refractive and transparent barrier that protects the intraocular elements from the external environment. Corneal trauma at the ocular surface may lead to diminished corneal clarity and detrimental effects on visual acuity. The aberrant activation of corneal stromal cells, which leads to myofibroblast differentiation and a disorganized extracellular matrix is a central biological process that may result in corneal fibrosis/scarring. In recent years, understanding the pathological and therapeutic EV mechanism(s) of action in the context of corneal biology has been a topic of increasing interest. In this review, we describe the clinical relevance of corneal fibrosis/scarring and how corneal stromal cells contribute to wound repair and their generation of the stromal haze. Furthermore, we will delve into EV characterization, their subtypes, and the pathological and therapeutic roles they play in corneal scarring/fibrosis.
Collapse
|