1
|
Huang Q, Chu Z, Wang Z, Li Q, Meng S, Lu Y, Ma K, Cui S, Hu W, Zhang W, Wei Q, Qu Y, Li H, Fu X, Zhang C. circCDK13-loaded small extracellular vesicles accelerate healing in preclinical diabetic wound models. Nat Commun 2024; 15:3904. [PMID: 38724502 PMCID: PMC11082226 DOI: 10.1038/s41467-024-48284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.
Collapse
Affiliation(s)
- Qilin Huang
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, China
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiankun Li
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Department of Dermatology, China Academy of Chinese Medical Science, Xiyuan Hospital, Beijing, 100091, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yanlin Qu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haihong Li
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518055, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
2
|
Li D, Guo J, Ni X, Sun G, Bao H. The progress and challenges of circRNA for diabetic foot ulcers: A mini-review. Front Endocrinol (Lausanne) 2022; 13:1019935. [PMID: 36531481 PMCID: PMC9747764 DOI: 10.3389/fendo.2022.1019935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Since the Human Genome Project was successfully completed, humanity has entered a post-genome era, and the second-generation sequencing technology has gradually progressed and become more accurate. Meanwhile, circRNAs plays a crucial role in the regulation of diseases and potential clinical applications has gradually attracted the attention of physicians. However, the mechanisms of circRNAs regulation at the cellular and molecular level of diabetic foot ulcer (DFU) is still not well-understood. With the deepening of research, there have been many recent studies conducted to explore the effect of circRNAs on DFU. In this mini-review, we discuss the potential role of circRNAs as therapeutic targets and diagnostic markers for DFU in order to gain a better understanding of the molecular mechanisms that underlie the development of DFU and to establish a theoretical basis for accurate treatment and effective prevention.
Collapse
Affiliation(s)
- Deer Li
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jiaxing Guo
- Department of Joint Surgery, The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Xiyu Ni
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Guanwen Sun
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Huhe Bao
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
3
|
Zhang Q, Sun Y, Wang C, Shao F. Circular RNA-microRNA-mRNA network identified circ_0007618 and circ_0029426 as new valuable biomarkers for lung adenocarcinoma. Bioengineered 2022; 13:6258-6271. [PMID: 35212617 PMCID: PMC8973644 DOI: 10.1080/21655979.2022.2027180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in multiple physiological processes. However, whether circRNAs function as the indicators of lung adenocarcinoma (LUAD) remains unclear. Three LUAD-related microarray datasets were downloaded from the Gene Expression Omnibus database, and overlapping differentially expressed circRNAs (DECs) in LUAD were identified. circ_0007618 and circ_0029426 were revealed to be significantly dysregulated in LUAD and verified in LUAD tissues and serum obtained in this study. Subsequently, the overall survival curve and receiver operating characteristics curve analyses were performed to evaluate the prognosis, sensitivity, and specificity of circ_0007618 and circ_0029426 for LUAD diagnosis. The results indicate that the combination of circ_0007618 and circ_0029426 is a potential biomarker for LUAD diagnosis and prognosis. TargetScan and miRDB were used to predict interactions between microRNAs (miRNAs) and circRNAs/mRNAs. A circRNA–miRNA–mRNA network was established for LUAD diagnosis. The Kyoto Encyclopedia of Genes and Genomes and protein–protein interaction network identified four hub genes. In conclusion, circ_0007618 and circ_0029426 may be novel biomarkers for LUAD diagnosis and prognosis. For LUAD diagnosis, PIK3CA and NRAS, and KRAS and ETS1, were targeted by circ_0007618 and circ_0029426, respectively.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, China.,Department of Thoracic Surgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Pulmonary Nodule Diagnosis and Treatment Research Center, Nanjing Medical University, Nanjing, China
| | - Yungang Sun
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, China.,Department of Thoracic Surgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Pulmonary Nodule Diagnosis and Treatment Research Center, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, China.,Department of Thoracic Surgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Pulmonary Nodule Diagnosis and Treatment Research Center, Nanjing Medical University, Nanjing, China
| | - Feng Shao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, China.,Department of Thoracic Surgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Pulmonary Nodule Diagnosis and Treatment Research Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Fu L, Zhang J, Lin Z, Li Y, Qin G. CircularRNA circ_0071269 knockdown protects against from diabetic cardiomyopathy injury by microRNA-145/gasdermin A axis. Bioengineered 2022; 13:2398-2411. [PMID: 35034587 PMCID: PMC8974193 DOI: 10.1080/21655979.2021.2024688] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in the development and progression of diabetic cardiomyopathy (DCM). However, the specific function and underlying mechanism of circ_0071269 in DCM remains unclear. In our study, mRNA and miRNA expression was detected by real-time quantitative PCR (qRT-PCR). RNase R and actinomycin D treatment were applied to test the characteristics of circ_0071269. Cell Counting Kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) and enzyme-linked immunosorbent assay (ELISA) kits were performed to determine the cell viability, cell LDH content and interleukin (IL)-1β and IL-18 levels, respectively. Cell death rate was determined by Flow cytometry, and Western blotting was for the protein expression levels. In addition, luciferase reporter and RNA pull-down assays were performed to confirm the binding relationship between miR-145 and circ_0071269 or gasdermin A (GSDMA). Echocardiography, Hematoxylin and Eosin (HE) Staining, and Immunohistochemical (IHC) Staining were performed to evaluate myocardial damage in vivo. We found that circ_0071269 was significantly overexpressed in H9c2 cells upon treatment with high glucose. Knockdown of circ_0071269 promoted cell viability and inhibited the inflammatory response, cytotoxicity, and pyroptosis of H9c2 cells in vitro. Moreover, circ_0071269 sponges miR-145 to upregulate GSDMA. A miR-145 inhibitor antagonized the effects of circ_0071269 knockdown on the cellular functions of H9c2 cells, while the effects of miR-145 were abrogated by the overexpression of GSDMA. Meanwhile, knockdown of circ_0071269 attenuated cardiac dysfunction of DM mice. Hence, circ_0071269 may promote the development of DCM through the miR-145/GSDMA axis and thus provide a novel marker for the treatment of DCM.
Collapse
Affiliation(s)
- Lanfang Fu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
- Department of Endocrinology, Haikou Hospital, Affiliated to Xiangya Medical College, Central South University, Haikou, China
| | - Juyun Zhang
- Department of Endocrinology, Haikou Hospital, Affiliated to Xiangya Medical College, Central South University, Haikou, China
| | - Zhu Lin
- Department of Endocrinology, Haikou Hospital, Affiliated to Xiangya Medical College, Central South University, Haikou, China
| | - Yi Li
- Department of Clinical Medicine, Hainan Medical College, Haikou, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|