1
|
Zidan A, El‐Sherbini AH, Noureldin A, Cooper DKC, Othman M. Characterizing coagulation responses in humans and nonhuman primates following kidney xenotransplantation-A narrative review. Am J Hematol 2025; 100:285-295. [PMID: 39404060 PMCID: PMC11705208 DOI: 10.1002/ajh.27506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 01/11/2025]
Abstract
The recent report of the first pig kidney transplant in a living human brings hope to thousands of people with end-stage kidney failure. The scientific community views this early success with caution as kidney xenotransplantation exhibits many challenges and barriers. One of these is coagulation dysregulation. This includes (i) pig von Willebrand Factor (vWF) interaction with human platelets, which can induce abnormal clotting responses, heightening the risk of graft failure, (ii) the inefficiency of pig thrombomodulin in activating human protein C, which emphasizes the species-specific variations that aggravate coagulation challenges, and (iii) the development of thrombotic microangiopathy in the pig grafts and the occurrence of systemic consumptive coagulopathy in the recipients. Indeed, coagulation dysregulation largely results from differences in endothelial cell response and incompatibilities between pig and human coagulation-anticoagulation pathways. These barriers can be resolved by modifications to pig vWF and the expression of human thrombomodulin and endothelial protein C receptors in pig cells, serving as strategic interventions to align the coagulation systems of the two species more closely. These coagulation challenges have clinical implications in how they affect graft survival and patient outcome. Genetic engineering of the organ-source pig and the administration of various drugs have assisted in correcting this coagulation dysregulation. Hence, comprehending and controlling coagulation dysregulation is crucial for progress in xenotransplantation as a viable option for treating patients with terminal kidney disease.
Collapse
Affiliation(s)
- Ali Zidan
- Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | | | - David K. C. Cooper
- Center for Transplantation Sciences, Department of SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, School of MedicineQueen's UniversityKingstonOntarioCanada
- School of Baccalaureate NursingSt. Lawrence CollegeKingstonOntarioCanada
- Clinical Pathology Department, Faculty of MedicineMansoura UniversityMansouraEgypt
| |
Collapse
|
2
|
Ramackers W, Rataj D, Werwitzke S, Bergmann S, Winkler M, Wünsch A, Bähr A, Wolf E, Klymiuk N, Ayares D, Tiede A. Expression of human thrombomodulin on porcine endothelial cells can reduce platelet aggregation but did not reduce activation of complement or endothelium - an experimental study. Transpl Int 2020; 33:437-449. [PMID: 31926034 DOI: 10.1111/tri.13573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/14/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Clinical xenotransplantation will only be feasible when present limitations can be controlled sufficiently. Activation of endothelium and complement as well as coagulopathy and thrombotic microangiopathy (TMA) is important barriers. Transgenic expression of hTBM on porcine endothelial cells is a reasonable approach to reduce activation of haemostasis. Endothelial cells from wild-type pigs as well from pigs expressing hTBM alone or in combination with hCD46 and knockout of the alpha-1,3,-galactosyltransferase (GTKO) were perfused with platelet-rich plasma in a microfluidic flow chamber. Platelet aggregation and activation, coagulation, complement and endothelial cell activation were assessed. Perfusion of wild-type porcine aortic endothelial cells (PAEC) resulted in distinct platelet aggregation. Expression of hTBM in either mono-transgenic or triple-transgenic (GTKO/hCD46/hTBM) PAEC showed significantly reduced or absent platelet aggregation. Flow cytometric analysis of platelets showed an increased CD62P expression in wild-type PAEC and significantly reduced expression in mono- or triple-transgenic PAEC. Activation of coagulation measured by TAT occured in WT PAEC and was clearly reduced in hTBM and GTKO/hCD46/hTBM PAEC. Activation of complement and endothelial cells was only reduced in GTKO/hCD46/hTBM but not in PAEC expressing hTBM alone. Expression of hTBM was able to prevent activation of coagulation and platelet aggregation in mono- and triple-transgenic PAEC, while activation of complement and endothelial cells was not reduced in mono-transgenic PAEC.
Collapse
Affiliation(s)
- Wolf Ramackers
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Dennis Rataj
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sonja Werwitzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sabine Bergmann
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Michael Winkler
- Department for General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Annegret Wünsch
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Eckard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Ramackers W, Werwitzke S, Klose J, Friedrich L, Johanning K, Bergmann S, Klempnauer J, Winkler M, Tiede A. Investigation of the influence of xenoreactive antibodies on activation of complement and coagulation in an ex vivo perfusion animal study using porcine kidneys. Transpl Int 2019; 32:546-556. [PMID: 30597634 DOI: 10.1111/tri.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/10/2018] [Accepted: 12/23/2018] [Indexed: 12/30/2022]
Abstract
During pig-to-primate xenotransplantation or perfusion of porcine organs with human blood, a xenogeneic coagulopathy with consecutive development of thrombotic microangiopathy (TMA) can be observed. The aim of this study was to elucidate the influence of the reduction of xenoreactive natural antibodies on the coagulopathy using an ex vivo perfusion system. Thirteen perfusion experiments using landrace wild-type porcine kidneys were performed in three different experimental groups: autologous, xenogeneic, and immunoadsorption. During and after perfusion, blood and tissue samples were collected to assess markers of coagulation, complement, inflammation, and endothelial activation. Immunoadsorption prior to perfusion did not prolong perfusion time (174 min ±28) compared to xenogeneic (182 min ±22) experiments, whereas autologous perfusion was possible for maximum of 240 min in all experiments. Activation of coagulation was similar comparing perfusions after immunoadsorption (D-Dimer 24 186 μg/l ±5813; TAT 566 μg/l ±34) to xenogeneic (D-Dimer 22 175 μg/l ±7826, TAT 600 μg/l ±0) experiments. But antibody-mediated complement activation was reduced in the immunoadsorption group. TNF-alpha and markers of endothelial cell activation were lower in the immunoadsorption group compared to the xenogeneic experiments. In this ex vivo perfusion model, we observed that marked removal of xenogeneic antibodies can reduce complement activation via the classical pathway as well as endothelial cell activation and inflammation. Immunoadsorption cannot prevent the activation of the terminal complement cascade and coagulation.
Collapse
Affiliation(s)
- Wolf Ramackers
- Department of General and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Sonja Werwitzke
- Department of Hematology Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Johannes Klose
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Friedrich
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Kai Johanning
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Sabine Bergmann
- Department of General and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Klempnauer
- Department of General and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Michael Winkler
- Department of General and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Tiede
- Department of Hematology Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Ramackers W, Klose J, Tiede A, Werwitzke S, Rataj D, Friedrich L, Johanning K, Vondran FWR, Bergmann S, Schuettler W, Bockmeyer CL, Becker JU, Klempnauer J, Winkler M. Effect of TNF-alpha blockade on coagulopathy and endothelial cell activation in xenoperfused porcine kidneys. Xenotransplantation 2016. [PMID: 26216261 DOI: 10.1111/xen.12179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Following pig-to-primate kidney transplantation, endothelial cell activation and xenogenic activation of the recipient's coagulation eventually leading to organ dysfunction and microthrombosis can be observed. In this study, we examined the effect of a TNF-receptor fusion protein (TNF-RFP) on endothelial cell activation and coagulopathy utilizing an appropriate ex vivo perfusion system. METHODS Using an ex vivo perfusion circuit based on C1-Inhibitor (C1-Inh) and low-dose heparin administration, we have analyzed consumptive coagulopathy following contact of human blood with porcine endothelium. Porcine kidneys were recovered following in situ cold perfusion with Histidine-tryptophan-ketoglutarate (HTK) organ preservation solution and were immediately connected to a perfusion circuit utilizing freshly drawn pooled porcine or human AB blood. The experiments were performed in three individual groups: autologous perfusion (n = 5), xenogenic perfusion without any further pharmacological intervention (n = 10), or with addition of TNF-RFP (n = 5). After perfusion, tissue samples were obtained for real-time PCR and immunohistological analyses. Endothelial cell activation was assessed by measuring the expression levels of E-selectin, ICAM-1, and VCAM-1. RESULTS Kidney survival during organ perfusion with human blood, C1-Inh, and heparin, but without any further pharmacological intervention was 126 ± 78 min. Coagulopathy was observed with significantly elevated concentrations of D-dimer and thrombin-antithrombin complex (TAT), resulting in the formation of multiple microthrombi. Endothelial cell activation was pronounced, as shown by increased expression of E-selectin and VCAM-1. In contrast, pharmacological intervention with TNF-RFP prolonged organ survival to 240 ± 0 min (max. perfusion time; no difference to autologous control). Formation of microthrombi was slightly reduced, although not significantly, if compared to the xenogenic control. D-dimer and TAT were elevated at similar levels to the xenogenic control experiments. In contrast, endothelial cell activation, as shown by real-time PCR, was significantly reduced in the TNF-RFP group. CONCLUSION We conclude that although coagulopathy was not affected, TNF-RFP is able to suppress inflammation occurring after xenoperfusion in this ex vivo perfusion model.
Collapse
Affiliation(s)
- Wolf Ramackers
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Johannes Klose
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Tiede
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sonja Werwitzke
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dennis Rataj
- Klinik für Haematologie, Haemostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars Friedrich
- Klinik für Anaesthesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kai Johanning
- Klinik für Anaesthesiologie und Intensivmedizin, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian W R Vondran
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sabine Bergmann
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfgang Schuettler
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Jan Ulrich Becker
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Jürgen Klempnauer
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Winkler
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
5
|
Rataj D, Werwitzke S, Haarmeijer B, Winkler M, Ramackers W, Petersen B, Niemann H, Wünsch A, Bähr A, Klymiuk N, Wolf E, Abicht JM, Ayares D, Tiede A. Inhibition of complement component C5 prevents clotting in an ex vivo model of xenogeneic activation of coagulation. Xenotransplantation 2016; 23:117-27. [DOI: 10.1111/xen.12218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Dennis Rataj
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Sonja Werwitzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Birgitt Haarmeijer
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| | - Michael Winkler
- Department for General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Wolf Ramackers
- Department for General, Visceral and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institute; Neustadt Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institute; Neustadt Germany
| | - Annegret Wünsch
- Molecular Animal Breeding and Biotechnology; Gene Center and Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Andrea Bähr
- Molecular Animal Breeding and Biotechnology; Gene Center and Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology; Gene Center and Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology; Gene Center and Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Jan-Michael Abicht
- Department of Anesthesiology; Ludwig Maximilian University of Munich; Munich Germany
| | | | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation; Hannover Medical School; Hannover Germany
| |
Collapse
|
6
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|
7
|
Corrigendum. Xenotransplantation 2015. [PMID: 26216262 DOI: 10.1111/xen.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|