1
|
Chaban R, Ileka I, McGrath G, Kinoshita K, Habibabady Z, Ma M, Diaz V, Maenaka A, Calhoun A, Dufault M, Rosales I, Laguerre CM, Sanatkar SA, Burdorf L, Ayares DL, Eyestone W, Sardana P, Kuravi K, Sorrells L, Lederman S, Lucas CG, Prather RS, Wells KD, Whitworth KM, Cooper DKC, Pierson RN. Extended survival of 9- and 10-gene-edited pig heart xenografts with ischemia minimization and CD154 costimulation blockade-based immunosuppression. J Heart Lung Transplant 2024; 43:1932-1944. [PMID: 39097214 PMCID: PMC11568940 DOI: 10.1016/j.healun.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Xenotransplantation has made significant advances recently using pigs genetically engineered to remove carbohydrate antigens, either alone or with addition of various human complement, coagulation, and anti-inflammatory ''transgenes''. Here we evaluated results associated with gene-edited (GE) pig hearts transplanted in baboons using an established costimulation-based immunosuppressive regimen and a cold-perfused graft preservation technique. METHODS Eight baboons received heterotopic abdominal heart transplants from 3-GE (GalKO.β4GalNT2KO.hCD55, n = 3), 9-GE (GalKO.β4GalNT2KO.GHRKO.hCD46.hCD55. TBM.EPCR.hCD47. HO-1, n = 3) or 10-G (9-GE+CMAHKO, n = 2) pigs using Steen's cold continuous perfusion for ischemia minimization. Immunosuppression (IS) included induction with anti-thymocyte globulin and αCD20, ongoing αCD154, MMF, and tapered corticosteroid. RESULTS All three 3-GE grafts functioned well initially, but failed within 5 days. One 9-GE graft was lost intraoperatively due to a technical issue and another was lost at POD 13 due to antibody mediated rejection (AMR) in a baboon with a strongly positive pre-operative cross-match. One 10-GE heart failed at POD113 with combined cellular and antibody mediated rejection. One 9-GE and one 10-GE hearts had preserved graft function with normal myocardium on protocol biopsies, but exhibited slowly progressive graft hypertrophy until elective necropsy at POD393 and 243 respectively. Elevated levels of IL-6, MCP-1, C-reactive protein, and human thrombomodulin were variably associated with conditioning, the transplant procedure, and clinically significant postoperative events. CONCLUSION Relative to reference genetics without thrombo-regulatory and anti-inflammatory gene expression, 9- or 10-GE pig hearts exhibit promising performance in the context of a clinically applicable regimen including ischemia minimization and αCD154-based IS, justifying further evaluation in an orthotopic model.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Mainz, Mainz, Germany
| | - Ikechukwu Ileka
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gannon McGrath
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kohei Kinoshita
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zahra Habibabady
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Madelyn Ma
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Victoria Diaz
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Akihiro Maenaka
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anthony Calhoun
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan Dufault
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ivy Rosales
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christiana M Laguerre
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Seyed-Amir Sanatkar
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lars Burdorf
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Revivicor, Inc., Blacksburg, Virginia
| | | | | | | | | | | | | | - Caroline G Lucas
- National Swine Resource and Research Center (NSRRC), Animal Science Research Center, University of Missouri, Columbia, Missouri
| | - Randall S Prather
- National Swine Resource and Research Center (NSRRC), Animal Science Research Center, University of Missouri, Columbia, Missouri
| | - Kevin D Wells
- National Swine Resource and Research Center (NSRRC), Animal Science Research Center, University of Missouri, Columbia, Missouri
| | - Kristin M Whitworth
- National Swine Resource and Research Center (NSRRC), Animal Science Research Center, University of Missouri, Columbia, Missouri
| | - David K C Cooper
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
2
|
Camenzind S. Xenotransplantation in the Age of Genome Editing: Results From the Expert Report for the Federal Ethics Committee on Nonhuman Biotechnology With a Special Focus on Animal Ethics. Xenotransplantation 2024; 31:e70008. [PMID: 39679652 DOI: 10.1111/xen.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND The Federal Ethics Committee on Non-Human Biotechnology (ECNH) of Switzerland is an independent expert committee appointed by the Federal Council and mandated to advise the federal authorities from an ethical perspective in the field of nonhuman biotechnology and gene technology. Due to recent developments in the field of xenotransplantation after the introduction of genome editing technologies, the ECNH has commissioned an expert report on the ethical questions of xenotransplantation with a focus on animal ethics. The subject of the inquiry is, in particular, if current developments in the field of xenotransplantation raise new questions regarding ethics in the nonhuman realm or if existing questions have to be re-examined and answered anew. METHODS An interdisciplinary approach was applied to answer this question. Based on the latest empirical results from medicine and biotechnology, xenotransplantation is analyzed and evaluated with reference to the dignity of the creature (Würde der Kreatur)-which is defined in the Swiss Federal Constitution-and the dignity of animals (Tierwürde) that is stipulated in the Swiss Animal Welfare Act and the Federal Act on Non-Human Gene Technology, as well as contemporary positions in the ethics of the human-animal relationship. RESULTS The report concludes that genome editing for xenotransplantation does not generate any qualitatively new ethical issues concerning ethics in the nonhuman realm. However, contemporary biotechnological developments must be taken as an opportunity to discuss existing ethical issues in an urgent and intensified manner, particularly regarding the significance of animals' moral standing. The lack of consideration of animal-related aspects and the neglect of current developments and the state of the art of animal ethics in the recent discussion about xenotransplantation is a scientific, ethical, and political issue because animals are most negatively affected by xenotransplantation. This is especially relevant because the contemporary state of the art in animal ethics tends to consider and protect animals more strongly than in the past.
Collapse
|
3
|
Anderson DJ, Jones-Carr M, Perry J, Kumar V, Porrett PM, Locke JE. Genetically Modified Porcine Kidneys Have Sufficient Tissue Integrity for Use in Pig-to-Human Xenotransplantation. Ann Surg 2024; 280:374-382. [PMID: 38842179 DOI: 10.1097/sla.0000000000006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
OBJECTIVE We sought to determine if genetically modified porcine kidneys used for xenotransplantation had sufficient tissue integrity to support long-term function in a human recipient. BACKGROUND Kidney transplantation remains the best available treatment for patients with end-stage kidney disease. However, a shortage of available donor human kidneys prevents many patients from achieving the benefits of transplantation. Xenotransplantation is a potential solution to this shortage. Recent pre-clinical human studies have demonstrated kidneys from genetically modified pig donors can be transplanted without hyperacute rejection and are capable of providing creatinine and other solute clearance. It is unknown whether the porcine kidneys would tolerate the relatively higher resting blood pressure in an adult human recipient compared with the pig donor or non-human primate (NHP) recipients used in translational studies. Furthermore, previous experience in NHPs raised concerns about the tissue integrity of the porcine ureter and post-xenotransplant growth of the porcine kidney. METHODS Kidneys recovered from porcine donors with 10 gene edits were transplanted into decedent brain-dead recipients who were not eligible for organ donation. Decedents underwent bilateral native nephrectomy before transplant and were followed for 3 to 7 days. Standard induction and maintenance immunosuppression was used as previously reported. Vital signs, including blood pressure, were recorded frequently. Kidney xenografts were assessed daily, serially biopsied, and were measured at implantation and study completion. RESULTS Three decedents underwent successful xenotransplantation. Subcapsular hematomas developed, requiring incision of the xenograft capsules to prevent Page kidney. Blood pressures were maintained in a physiologic range for adult humans (median arterial pressures (MAP) 108.5 mm Hg (Interquartile Range (IQR): 97-114 mm Hg), 74 mm Hg (IQR: 71-78 mm Hg), and 95 mm Hg (IQR: 88-99 mm Hg, respectively) and no bleeding complications or aneurysm formation was observed. Serial biopsies were taken from the xenografts without apparent loss of tissue integrity despite the lack of a capsule. Ureteroneocystotomies remained intact without evidence of urine leak. Xenograft growth was observed, but plateaued, in 1 decedent with increased volume of the left and right xenografts by 25% and 26%, respectively, and in the context of human growth hormone levels consistently less <0.1 ng/ml and insulin-like growth factor 1 levels ranging from 34-50 ng/ml. CONCLUSIONS The findings of this study suggest kidneys from 10-gene edited porcine donors have sufficient tissue integrity to tolerate xenotransplantation into a living human recipient. There was no evidence of anastomotic complications, and the xenografts tolerated needle biopsy without issue. Xenograft growth occurred but plateaued by the study end; further observation and investigation will be required to confirm this finding and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Douglas J Anderson
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Surgery, Division of Transplantation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Maggie Jones-Carr
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Surgery, Division of Transplantation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jackson Perry
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Surgery, Division of Transplantation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Vineeta Kumar
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, Division of Nephrology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Paige M Porrett
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Surgery, Division of Transplantation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jayme E Locke
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, AL
- Department of Surgery, Division of Transplantation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
5
|
Yang C, Wei Y, Li X, Xu K, Huo X, Chen G, Zhao H, Wang J, Wei T, Qing Y, Guo J, Zhao H, Zhang X, Jiao D, Xiong Z, Jamal MA, Zhao HY, Wei HJ. Production of Four-Gene (GTKO/hCD55/hTBM/hCD39)-Edited Donor Pigs and Kidney Xenotransplantation. Xenotransplantation 2024; 31:e12881. [PMID: 39185796 DOI: 10.1111/xen.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation. METHODS In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs. RESULTS First, 107 cell colonies were obtained through drug selection, of which seven were 4-GE colonies. Two colonies were selected for somatic cell nuclear transfer (SCNT), resulting in seven fetuses, of which four were GGTA1 biallelic knockout. Out of these four, two fetuses had higher expression of hCD55, hTBM, and hCD39. Therefore, these two fetuses were selected for two consecutive rounds of cloning, resulting in 97 live piglets. After phenotype identification, the GGTA1 gene of these pigs was inactivated, and hCD55, hTBM, and hCD39 were expressed in cells and multiple tissues. Furthermore, the numbers of monkey IgM and IgG binding to the peripheral blood mononuclear cells (PBMCs) of the 4-GEC pigs were markedly reduced. Moreover, 4-GEC porcine PBMCs had greater survival rates than those from wild-type pigs through complement-mediated cytolysis assays. In pig-to-monkey kidney xenotransplantation, the kidney xenograft successfully survived for 11 days. All physiological and biochemical indicators were normal, and no hyperacute rejection or coagulation abnormalities were found after transplantation. CONCLUSION These results indicate that the GTKO/hCD55/hTBM/hCD39 four-gene modification effectively alleviates immune rejection, and the pig kidney can functionally support the recipient monkey's life.
Collapse
Affiliation(s)
- Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yunfang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinglong Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaoying Huo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Yubo Qing
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Hongfang Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiong Zhang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Zhe Xiong
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China
- Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Yuan Y, Cui Y, Zhao D, Yuan Y, Zhao Y, Li D, Jiang X, Zhao G. Complement networks in gene-edited pig xenotransplantation: enhancing transplant success and addressing organ shortage. J Transl Med 2024; 22:324. [PMID: 38566098 PMCID: PMC10986007 DOI: 10.1186/s12967-024-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
The shortage of organs for transplantation emphasizes the urgent need for alternative solutions. Xenotransplantation has emerged as a promising option due to the greater availability of donor organs. However, significant hurdles such as hyperacute rejection and organ ischemia-reperfusion injury pose major challenges, largely orchestrated by the complement system, and activated immune responses. The complement system, a pivotal component of innate immunity, acts as a natural barrier for xenotransplantation. To address the challenges of immune rejection, gene-edited pigs have become a focal point, aiming to shield donor organs from human immune responses and enhance the overall success of xenotransplantation. This comprehensive review aims to illuminate strategies for regulating complement networks to optimize the efficacy of gene-edited pig xenotransplantation. We begin by exploring the impact of the complement system on the effectiveness of xenotransplantation. Subsequently, we delve into the evaluation of key complement regulators specific to gene-edited pigs. To further understand the status of xenotransplantation, we discuss preclinical studies that utilize gene-edited pigs as a viable source of organs. These investigations provide valuable insights into the feasibility and potential success of xenotransplantation, offering a bridge between scientific advancements and clinical application.
Collapse
Affiliation(s)
- Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dayue Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Yuan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanshuang Zhao
- Department of Pharmacy, The People's Hospital of Leshan, Leshan, China
| | - Danni Li
- Department of Pharmacy, Longquanyi District of Chengdu Maternity & Child Health Care Hospital, Chengdu, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Raza SS, Hara H, Eyestone W, Ayares D, Cleveland DC, Cooper DKC. Pigs in Transplantation Research and Their Potential as Sources of Organs in Clinical Xenotransplantation. Comp Med 2024; 74:33-48. [PMID: 38359908 PMCID: PMC11078278 DOI: 10.30802/aalas-cm-23-000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 10/29/2023] [Indexed: 02/17/2024]
Abstract
The pig has long been used as a research animal and has now gained importance as a potential source of organs for clinical xenotransplantation. When an organ from a wild-type (i. e., genetically unmodified) pig is transplanted into an immunosuppressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This response has been largely overcome by 1) extensive gene editing of the organ-source pig and 2) the administration to the recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T cell costimulation pathway. Gene editing has consisted of 1) deletion of expression of the 3 known carbohydrate xenoantigens against which humans have natural (preformed) antibodies and 2) the introduction of human 'protective' genes. The combination of gene editing and novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 y and of pig heart survival to up to 9 mo. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions.
Collapse
Key Words
- crp, complement-regulatory protein
- epcr, endothelial protein c receptor
- gal, galactose-α1,3-galactose
- gtko, α1,3-galactosyltransferase gene-knockout
- herv, human endogenous retrovirus
- neu5gc, n-glycolylneuraminic acid
- nhp, nonhuman primates
- perv, porcine endogenous retrovirus
- tko, triple knockout
- wt, wild-type
Collapse
Affiliation(s)
- S Sikandar Raza
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | | | | | - David C Cleveland
- Department of Cardiothoracic Surgery, Children's Hospital of Los Angeles, Los Angeles, California
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts;,
| |
Collapse
|
8
|
Lim B, Jang MJ, Oh SM, No JG, Lee J, Kim SE, Ock SA, Yun IJ, Kim J, Chee HK, Kim WS, Kang HJ, Cho K, Oh KB, Kim JM. Comparative transcriptome analysis between long- and short-term survival after pig-to-monkey cardiac xenotransplantation reveals differential heart failure development. Anim Cells Syst (Seoul) 2023; 27:234-248. [PMID: 37808548 PMCID: PMC10552608 DOI: 10.1080/19768354.2023.2265150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods. However, functional mechanisms based on survival period-related gene expression are unclear. This study aimed to identify the differential mechanisms between pig-to-monkey post-xenotransplantation long- and short-term survivals. Heterotopic abdominal transplantation was performed using a donor CD46-expressing GTKO pig and a recipient cynomolgus monkey. RNA-seq was performed using samples from POD60 XH from monkey and NH from age-matched pigs, D35 and D95. Gene-annotated DEGs for POD60 XH were compared with those for POD9 XH (Park et al. 2021). DEGs were identified by comparing gene expression levels in POD60 XH versus either D35 or D95 NH. 1,804 and 1,655 DEGs were identified in POD60 XH versus D35 NH and POD60 XH versus D95 NH, respectively. Overlapped 1,148 DEGs were annotated and compared with 1,348 DEGs for POD9 XH. Transcriptomic features for heart failure and inhibition of T cell activation were observed in both long (POD60)- and short (POD9)-term survived monkeys. Only short-term survived monkey showed heart remodeling and regeneration features, while long-term survived monkey indicated multi-organ failure by neural and hormonal signaling as well as suppression of B cell activation. Our results reveal differential heart failure development and survival at the transcriptome level and suggest candidate genes for specific signals to control adverse cardiac xenotransplantation effects.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Mi Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Eun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Ik Jin Yun
- Departments of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Junseok Kim
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyun Keun Chee
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan Seop Kim
- Departments of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Seongnam, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
9
|
Popova J, Bets V, Kozhevnikova E. Perspectives in Genome-Editing Techniques for Livestock. Animals (Basel) 2023; 13:2580. [PMID: 37627370 PMCID: PMC10452040 DOI: 10.3390/ani13162580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.
Collapse
Affiliation(s)
- Julia Popova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
| | - Victoria Bets
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Center of Technological Excellence, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Elena Kozhevnikova
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia; (J.P.); (V.B.)
- Laboratory of Experimental Models of Cognitive and Emotional Disorders, Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| |
Collapse
|
10
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Shih S, Askinas C, Caughey S, Vernice N, Berri N, Dong X, Spector JA. Sourcing and development of tissue for transplantation in reconstructive surgery: A narrative review. J Plast Reconstr Aesthet Surg 2023; 83:266-275. [PMID: 37279636 DOI: 10.1016/j.bjps.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023]
Abstract
The wealth of allogeneic and xenogeneic tissue products available to plastic and reconstructive surgeons has allowed for the development of novel surgical solutions to challenging clinical problems, often obviating the need to inflict donor site morbidity. Allogeneic tissue used for reconstructive surgery enters the tissue industry through whole body donation or reproductive tissue donation and has been regulated by the FDA as human cells, tissues, and cellular and tissue-based products (HCT/Ps) since 1997. Tissue banks offering allogeneic tissue can also undergo voluntary regulation by the American Association of Tissue Banks (AATB). Tissue prepared for transplantation is sterilized and can be processed into soft tissue or bone allografts for use in surgical reconstruction, whereas non-transplant tissue is prepared for clinical training and drug, medical device, and translational research. Xenogeneic tissue, which is most often derived from porcine or bovine sources, is also commercially available and is subject to strict regulations for animal breeding and screening for infectious diseases. Although xenogeneic products have historically been decellularized for use as non-immunogenic tissue products, recent advances in gene editing have opened the door to xenograft organ transplants into human patients. Herein, we describe an overview of the modern sourcing, regulation, processing, and applications of tissue products relevant to the field of plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Sabrina Shih
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Carly Askinas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Sarah Caughey
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nicholas Vernice
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Nabih Berri
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Xue Dong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Jason A Spector
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medical Center/New York-Presbyterian Hospital, New York, NY, United States of America.
| |
Collapse
|
12
|
Tseng HT, Lin YW, Huang CY, Shih CM, Tsai YT, Liu CW, Tsai CS, Lin FY. Animal Models for Heart Transplantation Focusing on the Pathological Conditions. Biomedicines 2023; 11:biomedicines11051414. [PMID: 37239085 DOI: 10.3390/biomedicines11051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac transplant recipients face many complications due to transplant rejection. Scientists must conduct animal experiments to study disease onset mechanisms and develop countermeasures. Therefore, many animal models have been developed for research topics including immunopathology of graft rejection, immunosuppressive therapies, anastomotic techniques, and graft preservation techniques. Small experimental animals include rodents, rabbits, and guinea pigs. They have a high metabolic rate, high reproductive rate, small size for easy handling, and low cost. Additionally, they have genetically modified strains for pathological mechanisms research; however, there is a lacuna, as these research results rarely translate directly to clinical applications. Large animals, including canines, pigs, and non-human primates, have anatomical structures and physiological states that are similar to those of humans; therefore, they are often used to validate the results obtained from small animal studies and directly speculate on the feasibility of applying these results in clinical practice. Before 2023, PubMed Central® at the United States National Institute of Health's National Library of Medicine was used for literature searches on the animal models for heart transplantation focusing on the pathological conditions. Unpublished reports and abstracts from conferences were excluded from this review article. We discussed the applications of small- and large-animal models in heart transplantation-related studies. This review article aimed to provide researchers with a complete understanding of animal models for heart transplantation by focusing on the pathological conditions created by each model.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei 112304, Taiwan
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ 85721, USA
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Wu WK, Stier MT, Stokes JW, Ukita R, Patel YJ, Cortelli M, Landstreet SR, Talackine JR, Cardwell NL, Simonds EM, Mentz M, Lowe C, Benson C, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Immune characterization of a xenogeneic human lung cross-circulation support system. SCIENCE ADVANCES 2023; 9:eade7647. [PMID: 37000867 PMCID: PMC10065447 DOI: 10.1126/sciadv.ade7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.
Collapse
Affiliation(s)
- Wei K. Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew T. Stier
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R. Landstreet
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Simonds
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin T. Demarest
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophoclis P. Alexopoulos
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| |
Collapse
|
14
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
15
|
Niemann H. Xenotransplantate vom Schwein – ist das Ende des Organmangels
in Sicht? TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1814-8440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ZusammenfassungUnter „Xenotransplantation“ wird die Übertragung von
funktionsfähigen Zellen, Geweben oder Organen zwischen verschiedenen
Spezies verstanden, insbesondere von Schweinen auf den Menschen. In den meisten
Industrieländern klafft eine große Lücke zwischen der
Anzahl geeigneter Spenderorgane und der Anzahl benötigter Transplantate.
Weltweit können nur etwa 10% des Organbedarfs durch Spenden
gedeckt werden. Eine erfolgreiche Xenotransplantation könnte diesen
Mangel mildern oder sogar weitgehend vermeiden. Das Schwein wird aus
verschiedenen Erwägungen heraus als am besten geeignete Spenderspezies
angesehen. Bei einer Übertragung porziner Organe auf Primaten treten
verschiedene immunologisch bedingte Abstoßungsreaktionen auf, die das
übertragene Organ innerhalb kurzer Zeit zerstören
können, wie die HAR (hyperakute Abstoßung), die AVR (akute
vaskuläre Abstoßung) und die spätere zelluläre
Abstoßung. Diese Abstoßungsreaktionen müssen durch
genetische Modifikationen im Schwein und eine geeignete immunsuppressive
Behandlung des Empfängers kontrolliert werden. Dazu müssen Tiere
mit mehrfachen genetischen Veränderungen produziert und im Hinblick auf
ihre Eignung für eine erfolgreiche Xenotransplantation geprüft
werden. Inzwischen können die HAR und auch die AVR durch Knockouts von
antigenen Oberflächenepitopen (z. B. αGal
[Galaktose-α1,3-Galaktose]) und transgene Expression humaner Gene mit
antiinflammatorischer, antiapoptotischer oder antikoagulativer Wirkung
zuverlässig kontrolliert werden. Nach orthotopen Transplantationen in
nicht humane Primaten konnten inzwischen mit Schweineherzen
Überlebensraten von bis zu 264 Tagen und mit porzinen Nieren von 435
Tagen erzielt werden. Eine Übertragung pathogener Erreger auf den
Empfänger kann bei Einhaltung einschlägiger
Hygienemaßnahmen ausgeschlossen werden. PERV (porzine endogene
Retroviren) können durch RNA-(Ribonukleinsäure-)Interferenz oder
Gen-Knockout ausgeschaltet werden. Sie stellen damit kein
Übertragungsrisiko für den Empfänger mehr dar. Anfang
2022 wurde in Baltimore (USA) ein Schweineherz mit 10 genetischen Modifikationen
auf einen Patienten mit schwerem Herzleiden übertragen, mit dem der
Empfänger 2 Monate offenbar ohne größere Probleme lebte.
Es wird erwartet, dass Xenotransplantate vom Schwein in absehbarer Zeit zur
klinischen Anwendungsreife kommen werden. Dazu werden klinische Versuche zur
systematischen Erfassung aller Auswirkungen solcher Transplantate auf den
Patienten sowie geeignete rechtliche und finanzielle Rahmenbedingungen
benötigt.
Collapse
|
16
|
Rogers MP, Fishberger G, Martini N, Baldwin M, Wang L, Chen W, Liu R, Lozonschi L. Orthotopic Heart Auto-Transplantation in a Swine Model. WORLD JOURNAL OF CARDIOVASCULAR SURGERY 2022; 12:200-206. [PMID: 36909676 PMCID: PMC10003613 DOI: 10.4236/wjcs.2022.129017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The porcine heart bears the best resemblance to the human heart and remains the preferred preclinical model for anatomical, physiological, and medical device studies. In an effort to study phenomena related strictly to ischemia reperfusion and donor preservation protocols, it is essential to avoid the immune responses related to allotransplantation. Orthotopic auto-transplantation is a unique strategy to the field of cardiac transplantation for ex vivo experimentation. Nevertheless, auto-transplantation carries its own technical challenges related to insufficient length of the great vessels that are to be transected and re-anastomosed. METHODS A novel method for orthotopic cardiac auto-transplantation in the porcine model was developed and was described herein. Porcine models were used for ex vivo experimentation of a novel device to study ischemia reperfusion injury. RESULTS A total of five porcine models were used for ex vivo experimentation of a novel device to mitigate ischemia reperfusion injury and determine effects of donor preservation. Modifications to routine cardiac transplantation protocols to allow for successful auto-transplantation are described. CONCLUSION Orthotopic cardiac auto-transplantation in the porcine model is a plausible and technically feasible method for reliable study of ischemia reperfusion injury and donor preservation protocols. Here, we describe methods for both direct orthotopic porcine cardiac auto-transplantations as well as a simplified protocol that can be substituted for full surgical auto-transplantation for the studies of preservation of donor hearts.
Collapse
Affiliation(s)
- Michael P. Rogers
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Gregory Fishberger
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nick Martini
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Margaret Baldwin
- Department of Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Wei Chen
- Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lucian Lozonschi
- Division of Cardiothoracic Surgery, Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
17
|
Chaban R, Cooper DKC, Pierson RN. Pig heart and lung xenotransplantation: Present status. J Heart Lung Transplant 2022; 41:1014-1022. [PMID: 35659792 PMCID: PMC10124776 DOI: 10.1016/j.healun.2022.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The recent pig heart transplant in a patient at the University of Maryland Medical Center has stimulated renewed interest in the xenotransplantation of organs from genetically engineered pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 approaches - (1) the deletion of expression of the three known pig carbohydrate xenoantigens against which humans have preformed antibodies, and (2) the transgenic introduction of human 'protective' proteins, such as complement-regulatory proteins. These gene modifications, coupled with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The initial clinical success at the University of Maryland reinforces encouraging preclinical results. It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their utility for destination therapy remains uncertain. Because of additional complex immunobiological problems, the same approach has been less successful in preclinical lung xenograft transplantation, where survival is still measured in days or weeks. The first formal clinical trials of pig heart transplantation may include patients who do not have access to an allotransplant, those with contraindications for mechanical circulatory support, those in need of retransplantation or with a high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also be considered.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
19
|
Miura S, Habibabady ZA, Pollok F, Connolly M, Pratts S, Dandro A, Sorrells L, Karavi K, Phelps C, Eyestone W, Ayares D, Burdorf L, Azimzadeh A, Pierson RN. Effects of human TFPI and CD47 expression and selectin and integrin inhibition during GalTKO.hCD46 pig lung perfusion with human blood. Xenotransplantation 2022; 29:e12725. [PMID: 35234315 PMCID: PMC10207735 DOI: 10.1111/xen.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Loss of barrier function when GalTKO.hCD46 porcine lungs are perfused with human blood is associated with coagulation pathway dysregulation, innate immune system activation, and rapid sequestration of human formed blood elements. Here, we evaluate whether genetic expression of human tissue factor pathway inhibitor (hTFPI) and human CD47 (hCD47), alone or with combined selectin and integrin adhesion pathway inhibitors, delays GalTKO.hCD46 porcine lung injury or modulates neutrophil and platelet sequestration. METHODS In a well-established paired ex vivo lung perfusion model, GalTKO.hCD46.hTFPI.hCD47 transgenic porcine lungs (hTFPI.hCD47, n = 7) were compared to GalTKO.hCD46 lungs (reference, n = 5). All lung donor pigs were treated with a thromboxane synthase inhibitor, anti-histamine, and anti-GPIb integrin-blocking Fab, and were pre-treated with Desmopressin. In both genotypes, one lung of each pair was additionally treated with PSGL-1 and GMI-1271 (P- and E-selectin) and IB4 (CD11b/18 integrin) adhesion inhibitors (n = 6 hTFPI.hCD47, n = 3 reference). RESULTS All except for two reference lungs did not fail within 480 min when experiments were electively terminated. Selectin and integrin adhesion inhibitors moderately attenuated initial pulmonary vascular resistance (PVR) elevation in hTFPI.hCD47 lungs. Neutrophil sequestration was significantly delayed during the early time points following reperfusion and terminal platelet activation was attenuated in association with lungs expressing hTFPI.hCD47, but additional adhesion pathway inhibitors did not show further effects with either lung genotype. CONCLUSION Expression of hTFPI.hCD47 on porcine lung may be useful as part of an integrated strategy to prevent neutrophil adhesion and platelet activation that are associated with xenograft injury. Additionally, targeting canonical selectin and integrin adhesion pathways reduced PVR elevation associated with hTFPI.hCD47 expression, but did not significantly attenuate neutrophil or platelet sequestration. We conclude that other adhesive mechanisms mediate the residual sequestration of human formed blood elements to pig endothelium that occurs even in the context of the multiple genetic modifications and drug treatments tested here.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Zahra A. Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Margaret Connolly
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Lars Burdorf
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Agnes Azimzadeh
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Affiliation(s)
- Jennifer Elisseeff
- From the Translational Tissue Engineering Center, Wilmer Eye Institute, and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore (J.E.); the McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh (S.F.B.); and the Institute for Systems Genetics and the Department of Biochemistry and Molecular Pharmacology, NYU Langone Health (J.D.B.), and the Department of Biomedical Engineering, NYU Tandon School of Engineering (J.D.B.) - both in New York
| | - Stephen F Badylak
- From the Translational Tissue Engineering Center, Wilmer Eye Institute, and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore (J.E.); the McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh (S.F.B.); and the Institute for Systems Genetics and the Department of Biochemistry and Molecular Pharmacology, NYU Langone Health (J.D.B.), and the Department of Biomedical Engineering, NYU Tandon School of Engineering (J.D.B.) - both in New York
| | - Jef D Boeke
- From the Translational Tissue Engineering Center, Wilmer Eye Institute, and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore (J.E.); the McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh (S.F.B.); and the Institute for Systems Genetics and the Department of Biochemistry and Molecular Pharmacology, NYU Langone Health (J.D.B.), and the Department of Biomedical Engineering, NYU Tandon School of Engineering (J.D.B.) - both in New York
| |
Collapse
|
21
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
22
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Savy V, Alberio V, Vans Landschoot G, Moro LN, Olea FD, Rodríguez-Álvarez L, Salamone DF. Effect of Embryo Aggregation on In Vitro Development of Adipose-Derived Mesenchymal Stem Cell-Derived Bovine Clones. Cell Reprogram 2021; 23:277-289. [PMID: 34648384 DOI: 10.1089/cell.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.
Collapse
Affiliation(s)
- Virginia Savy
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldina Vans Landschoot
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Fernanda Daniela Olea
- Laboratorio de Medicina Regenerativa Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Favaloro, Buenos Aires, Argentina
| | - Lleretny Rodríguez-Álvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Bikhet M, Iwase H, Yamamoto T, Jagdale A, Foote JB, Ezzelarab M, Anderson DJ, Locke JE, Eckhoff DE, Hara H, Cooper DKC. What Therapeutic Regimen Will Be Optimal for Initial Clinical Trials of Pig Organ Transplantation? Transplantation 2021; 105:1143-1155. [PMID: 33534529 DOI: 10.1097/tp.0000000000003622] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We discuss what therapeutic regimen might be acceptable/successful in the first clinical trial of genetically engineered pig kidney or heart transplantation. As regimens based on a calcineurin inhibitor or CTLA4-Ig have proved unsuccessful, the regimen we administer to baboons is based on induction therapy with antithymocyte globulin, an anti-CD20 mAb (Rituximab), and cobra venom factor, with maintenance therapy based on blockade of the CD40/CD154 costimulation pathway (with an anti-CD40 mAb), with rapamycin, and a corticosteroid. An anti-inflammatory agent (etanercept) is administered for the first 2 wk, and adjuvant therapy includes prophylaxis against thrombotic complications, anemia, cytomegalovirus, and pneumocystis. Using this regimen, although antibody-mediated rejection certainly can occur, we have documented no definite evidence of an adaptive immune response to the pig xenograft. This regimen could also form the basis for the first clinical trial, except that cobra venom factor will be replaced by a clinically approved agent, for example, a C1-esterase inhibitor. However, none of the agents that block the CD40/CD154 pathway are yet approved for clinical use, and so this hurdle remains to be overcome. The role of anti-inflammatory agents remains unproven. The major difference between this suggested regimen and those used in allotransplantation is the replacement of a calcineurin inhibitor with a costimulation blockade agent, but this does not appear to increase the complications of the regimen.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Douglas J Anderson
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jayme E Locke
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Devin E Eckhoff
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
25
|
Garcia LR, Brito FDS, Felicio ML, Garzesi AM, Tardivo MT, Polegato BF, Minicucci MF, Zornoff LAM. Clinical trials in cardiac xenotransplantation: Are we ready to overcome barriers? J Card Surg 2021; 36:3796-3801. [PMID: 34137071 DOI: 10.1111/jocs.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Heart allotransplantation has become one of the methods of choice in the treatment of severe heart failure. In the face of its difficulties, such as the unmet balance between organ supply and demand, the use of xenotransplantation (XTx) might be an attractive option shortly, even more with the ongoing progress achieved regarding the avoidance of hyperacute rejection and primary organ disfunction, maintenance of xenograft function and control of xenograft growth. To make possible this translational challenge, some points must be taken into account indeed, and they are the equipoise of human benefit and animal suffering, the risk of unknown infections, a well prepared informed consent, ethical and religious beliefs, and the role of cardiac XTx in a ventricular assistance device era.
Collapse
Affiliation(s)
- Leonardo Rufino Garcia
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Flavio de Souza Brito
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcello Laneza Felicio
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - André Monti Garzesi
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Márcia Terezinha Tardivo
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
26
|
Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 2021; 162:F59-F68. [PMID: 34096507 PMCID: PMC8240728 DOI: 10.1530/rep-21-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences University of Nottingham, Nottingham, UK
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
27
|
Denner J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses 2021; 13:1072. [PMID: 34199939 PMCID: PMC8229715 DOI: 10.3390/v13061072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Porcine lymphotropic herpesviruses -1, -2 and -3 (PLHV-1, PLHV-2 and PLHV-3) are gammaherpesviruses which are widespread in pigs. They are closely related to the Epstein-Barr virus (EBV) and Kaposi sarcoma herpesvirus, both of which cause severe diseases in humans. PLHVs are also related to bovine and ovine gammaherpesviruses, which are apathogenic in the natural host, but cause severe diseases after transmission into other species. Until now, no association between PLHVs and any pig diseases had been described. However, PLHV-1 causes a post-transplantation lymphoproliferative disorder (PTLD) after experimental transplantations in minipigs. This disorder is similar to human PTLD, a serious complication of solid human organ transplantation linked to EBV. Xenotransplantation using pig cells, tissues and organs is under development in order to alleviate the shortage of human transplants. Meanwhile, remarkable survival times of pig xenotransplants in non-human primates have been achieved. In these preclinical trials, another pig herpesvirus, the porcine cytomegalovirus (PCMV), a roseolovirus, was shown to significantly reduce the survival time of pig xenotransplants in baboons and other non-human primates. Although PLHV-1 was found in genetically modified donor pigs used in preclinical xenotransplantation, it was, in contrast to PCMV, not transmitted to the recipient. Nevertheless, it seems important to use PLHV-free donor pigs in order to achieve safe xenotransplantation.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University, 14163 Berlin, Germany
| |
Collapse
|
28
|
Kitano K, Ohata K, Economopoulos KP, Gorman DE, Gilpin SE, Becerra DC, Ott HC. Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Semin Thorac Cardiovasc Surg 2021; 34:752-759. [PMID: 33713829 DOI: 10.1053/j.semtcvs.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Lung transplantation is the only treatment for end-stage lung disease; however, donor organ shortage and intense immunosuppression limit its broad clinical impact. Bioengineering of lungs with patient-derived cells could overcome these problems. We created bioartificial lungs by seeding human-derived cells onto porcine lung matrices and performed orthotopic transplantation to assess feasibility and in vivo function. Porcine decellularized lung scaffolds were seeded with human airway epithelial cells and human umbilical vein endothelial cells. Following in vitro culture, the bioartificial lungs were orthotopically transplanted into porcine recipients with planned 1-day survival (n = 3). Lungs were assessed with histology and in vivo function. Orthotopic transplantation of cadaveric lungs was performed as control. Engraftment of endothelial and epithelial cells in the grafts were histologically demonstrated. Technically successful orthotopic anastomoses of the vasculatures and airway were achieved in all animals. Perfusion and ventilation of the lung grafts were confirmed intraoperatively. The gas exchange function was evident immediately after transplantation; PO2 gradient between pulmonary artery and vein were 178 ± 153 mm Hg in the bioartificial lung group and 183 ± 117 mm Hg in the control group. At time of evaluation 24 hours after reperfusion, the pulmonary arteries were found to be occluded with thrombus in all bioartificial lungs. Engineering and orthotopic transplantation of bioartificial lungs with human cells were technically feasible in a porcine model. Early gas exchange function was evident. Further progress in optimizing recellularization and maturation of the grafts will be necessary for sustained perfusability and function.
Collapse
Affiliation(s)
- Kentaro Kitano
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Thoracic Surgery, The University of Tokyo Hospital, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Daniel E Gorman
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Becerra
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
Javier MFDM, Javier Delmo EM, Hetzer R. Heart transplantation: the Berlin experience and perspectives. Cardiovasc Diagn Ther 2021; 11:243-253. [PMID: 33708496 DOI: 10.21037/cdt-20-290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In patients with end-stage heart failure, heart transplants are now an ingrained practice, as they provide satisfying long-term results with good predictability and quality of life. The successful outcome has evolved from the development of effective immunosuppression, recognition of allograft rejection through diagnostic modalities and improvement in donor organ perfusion. Unfortunately, transplant availability is constrained by the shortage of donor organs and is therefore considered a casuistic therapy. The outcome is defined by unwanted effects of immunosuppressants, increased tumor occurrence and chronic transplant angiopathies. In the long term, patients fear primarily the occurrence of renal insufficiency and secondly osteoporosis with its skeletal complications and corresponding pain. Nevertheless, the overall quality of life is not very limited; on the contrary, patients demonstrate a surprisingly meaningful lives 10-20 years after the transplant. Their physical presentation is similar to those with varying co-morbidities. Most of the 20-year surviving patients are physically active and happy with their daily lives. Medical ambition has seen heart transplantation become reality and develop into an influential force regarding heart surgery, immunology, pharmacology, organ logistics and medical ethics. Its development has also molded our definitions of death and has driven public and health care approval of medical advances. It has provided a strong solidarity among politicians, sociologists, physicians and citizens. Problems regarding ethics continue to endure, and will forecast heart transplants as a defining, but temporary era in human medicine. The donor organ shortage has stimulated the use of resuscitated donor hearts and encouraged exploration and advancement of mechanical circulatory support systems and xenotransplantation as alternatives in the management of end-stage heart failure.
Collapse
|
30
|
Carvalho-Oliveira M, Valdivia E, Blasczyk R, Figueiredo C. Immunogenetics of xenotransplantation. Int J Immunogenet 2021; 48:120-134. [PMID: 33410582 DOI: 10.1111/iji.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Xenotransplantation may become the highly desired solution to close the gap between the availability of donated organs and number of patients on the waiting list. In recent years, enormous progress has been made in the development of genetically engineered donor pigs. The introduced genetic modifications showed to be efficient in prolonging xenograft survival. In this review, we focus on the type of immune responses that may target xeno-organs after transplantation and promising immunogenetic modifications that show a beneficial effect in ameliorating or eliminating harmful xenogeneic immune responses. Increasing histocompatibility of xenografts by eliminating genetic discrepancies between species will pave their way into clinical application.
Collapse
Affiliation(s)
- Marco Carvalho-Oliveira
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| |
Collapse
|
31
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Pierson RN, Fishman JA, Lewis GD, D'Alessandro DA, Connolly MR, Burdorf L, Madsen JC, Azimzadeh AM. Progress Toward Cardiac Xenotransplantation. Circulation 2020; 142:1389-1398. [PMID: 33017208 DOI: 10.1161/circulationaha.120.048186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consistent survival of life-supporting pig heart xenograft recipients beyond 90 days was recently reported using genetically modified pigs and a clinically applicable drug treatment regimen. If this remarkable achievement proves reproducible, published benchmarks for clinical translation of cardiac xenografts appear to be within reach. Key mechanistic insights are summarized here that informed recent pig design and therapeutic choices, which together appear likely to enable early clinical translation.
Collapse
Affiliation(s)
- Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Jay A Fishman
- Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Gregory D Lewis
- Division of Cardiology, Department of Medicine (G.D.L.), Massachusetts General Hospital and Harvard University, Boston
| | - David A D'Alessandro
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Margaret R Connolly
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Joren C Madsen
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery (R.N.P., D.A.D., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston.,Center for Transplantation Sciences (R.N.P., J.A.F., M.R.C., L.B., J.C.M., A.M.A.), Massachusetts General Hospital and Harvard University, Boston
| |
Collapse
|
33
|
Denner J. By definition…. Xenotransplantation 2020; 27:e12599. [PMID: 32347614 DOI: 10.1111/xen.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
|
34
|
Denner J. Sensitive detection systems for infectious agents in xenotransplantation. Xenotransplantation 2020:e12594. [PMID: 32304138 DOI: 10.1111/xen.12594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Xenotransplantation of pig cells, tissues, or organs may be associated with transmission of porcine microorganisms, first of all of viruses, to the transplant recipient, potentially inducing a disease (zoonosis). I would like to define detection systems as the complex of sample generation, sample preparation, sample origin, time of sampling, and the necessary negative and positive controls along with the specific detection methods, either PCR-based, cell-based, or immunological methods. Some xenotransplantation-relevant viruses have already been defined; others are still unknown. The PCR-based methods include PCR and real-time PCR for DNA viruses, and RT-PCR and real-time RT-PCR for RNA viruses as well as for virus expression studies at the RNA level. Furthermore, droplet digital PCR (ddPCR) can be used for the determination of virus and provirus copies. To detect expression at the protein level, immunofluorescence, immunohistochemistry, and Western blot analyses can be used. To detect virus production and to detect infectious viruses, electron microscopy and infection assays can be used. Furthermore, immunological methods such as Western blot analysis or ELISA can be used to detect virus-specific antibodies. Detection of antiviral antibodies is a reliable and sensitive indirect detection method. For these immunological methods, purified viruses, recombinant viral proteins, or synthetic peptides are used as antigens and control sera and control antigens are needed. All these methods have been used in the past for the characterization of different pig breeds including genetically modified pigs generated for xenotransplantation and for the screening of recipients in preclinical and clinical xenotransplantations. Whereas in preclinical trials a few porcine viruses have been transmitted to the non-human primate recipients, in first clinical trials no such transmissions to humans were observed. Further improvement of the detection systems and their application in virus elimination programs will lead to clean donor animals and a safe xenotransplantation.
Collapse
|
35
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
36
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
37
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Jagdale A, Kumar V, Mannon RB, Hanaway MJ, Anderson DJ, Eckhoff DE. Clinical Pig Kidney Xenotransplantation: How Close Are We? J Am Soc Nephrol 2019; 31:12-21. [PMID: 31792154 DOI: 10.1681/asn.2019070651] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with ESKD who would benefit from a kidney transplant face a critical and continuing shortage of kidneys from deceased human donors. As a result, such patients wait a median of 3.9 years to receive a donor kidney, by which time approximately 35% of transplant candidates have died while waiting or have been removed from the waiting list. Those of blood group B or O may experience a significantly longer waiting period. This problem could be resolved if kidneys from genetically engineered pigs offered an alternative with an acceptable clinical outcome. Attempts to accomplish this have followed two major paths: deletion of pig xenoantigens, as well as insertion of "protective" human transgenes to counter the human immune response. Pigs with up to nine genetic manipulations are now available. In nonhuman primates, administering novel agents that block the CD40/CD154 costimulation pathway, such as an anti-CD40 mAb, suppresses the adaptive immune response, leading to pig kidney graft survival of many months without features of rejection (experiments were terminated for infectious complications). In the absence of innate and adaptive immune responses, the transplanted pig kidneys have generally displayed excellent function. A clinical trial is anticipated within 2 years. We suggest that it would be ethical to offer a pig kidney transplant to selected patients who have a life expectancy shorter than the time it would take for them to obtain a kidney from a deceased human donor. In the future, the pigs will also be genetically engineered to control the adaptive immune response, thus enabling exogenous immunosuppressive therapy to be significantly reduced or eliminated.
Collapse
Affiliation(s)
| | - Hidetaka Hara
- Division of Transplantation, Department of Surgery and
| | - Hayato Iwase
- Division of Transplantation, Department of Surgery and
| | | | | | - Vineeta Kumar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Roslyn Bernstein Mannon
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
38
|
Denner J, Bigley TM, Phan TL, Zimmermann C, Zhou X, Kaufer BB. Comparative Analysis of Roseoloviruses in Humans, Pigs, Mice, and Other Species. Viruses 2019; 11:E1108. [PMID: 31801268 PMCID: PMC6949924 DOI: 10.3390/v11121108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses of the genus Roseolovirus belong to the subfamily Betaherpesvirinae, family Herpesviridae. Roseoloviruses have been studied in humans, mice and pigs, but they are likely also present in other species. This is the first comparative analysis of roseoloviruses in humans and animals. The human roseoloviruses human herpesvirus 6A (HHV-6A), 6B (HHV-6B), and 7 (HHV-7) are relatively well characterized. In contrast, little is known about the murine roseolovirus (MRV), also known as murine thymic virus (MTV) or murine thymic lymphotrophic virus (MTLV), and the porcine roseolovirus (PRV), initially incorrectly named porcine cytomegalovirus (PCMV). Human roseoloviruses have gained attention because they can cause severe diseases including encephalitis in immunocompromised transplant and AIDS patients and febrile seizures in infants. They have been linked to a number of neurological diseases in the immunocompetent including multiple sclerosis (MS) and Alzheimer's. However, to prove the causality in the latter disease associations is challenging due to the high prevalence of these viruses in the human population. PCMV/PRV has attracted attention because it may be transmitted and pose a risk in xenotransplantation, e.g., the transplantation of pig organs into humans. Most importantly, all roseoloviruses are immunosuppressive, the humoral and cellular immune responses against these viruses are not well studied and vaccines as well as effective antivirals are not available.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Robert Koch Fellow, 13352 Berlin, Germany
| | - Tarin M. Bigley
- Division of Rheumatology, Department. of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Tuan L. Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA;
- HHV-6 Foundation, Santa Barbara, CA 93108, USA
| | - Cosima Zimmermann
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Xiaofeng Zhou
- Division of Pulmonary and Critical Care Medicine, Department. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
39
|
Forneris N, Levy H, Burlak C. Xenotransplantation literature update, July/August 2019. Xenotransplantation 2019; 26:e12561. [PMID: 31562656 DOI: 10.1111/xen.12561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heather Levy
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
40
|
Rodriguez S, Lau H, Corrales N, Heng J, Lee S, Stiner R, Alexander M, Lakey JRT. Characterization of chelator-mediated recovery of pancreatic islets from barium-stabilized alginate microcapsules. Xenotransplantation 2019; 27:e12554. [PMID: 31495985 DOI: 10.1111/xen.12554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.
Collapse
Affiliation(s)
- Samuel Rodriguez
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Hien Lau
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Sarah Lee
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Rachel Stiner
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Orange, CA, USA
| |
Collapse
|
41
|
Schroder PM, Fitch ZW, Schmitz R, Choi AY, Kwun J, Knechtle SJ. The past, present, and future of costimulation blockade in organ transplantation. Curr Opin Organ Transplant 2019; 24:391-401. [PMID: 31157670 PMCID: PMC7088447 DOI: 10.1097/mot.0000000000000656] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Manipulating costimulatory signals has been shown to alter T cell responses and prolong graft survival in solid organ transplantation. Our understanding of and ability to target various costimulation pathways continues to evolve. RECENT FINDINGS Since the approval of belatacept in kidney transplantation, many additional biologics have been developed targeting clinically relevant costimulation signaling axes including CD40-CD40L, inducible costimulator-inducible costimulator ligand (ICOS-ICOSL), and OX40-OX40L. Currently, the effects of costimulation blockade on posttransplant humoral responses, tolerance induction, and xenotransplantation are under active investigation. Here, we will discuss these pathways as well as preclinical and clinical outcomes of biologics targeting these pathways in organ transplantation. SUMMARY Targeting costimultion is a promising approach for not only controlling T cell but also B cell responses. Consequently, costimulation blockade shows considerable potential for improving outcomes in antibody-mediated rejection and xenotransplantation.
Collapse
Affiliation(s)
- Paul M. Schroder
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W. Fitch
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Y. Choi
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
42
|
Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, Stephenson A, Farris AB, Strobert EA, Jenkins J, Walters EM, Larsen CP, Tector M, Tector AJ, Adams AB. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019; 19:2174-2185. [PMID: 30821922 PMCID: PMC6658347 DOI: 10.1111/ajt.15329] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 01/25/2023]
Abstract
The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.
Collapse
Affiliation(s)
- SC Kim
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - DV Mathews
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - CP Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - LB Higginbotham
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - J Ladowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - G Martens
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - A Stephenson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - AB Farris
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - EA Strobert
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - J Jenkins
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - EM Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - CP Larsen
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - M Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AJ Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AB Adams
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
43
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
44
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 2019; 26:e12516. [PMID: 30989742 PMCID: PMC10154075 DOI: 10.1111/xen.12516] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Xenotransplantation research has made considerable progress in recent years, largely through the increasing availability of pigs with multiple genetic modifications. We suggest that a pig with nine genetic modifications (ie, currently available) will provide organs (initially kidneys and hearts) that would function for a clinically valuable period of time, for example, >12 months, after transplantation into patients with end-stage organ failure. The national regulatory authorities, however, will likely require evidence, based on in vitro and/or in vivo experimental data, to justify the inclusion of each individual genetic modification in the pig. We provide data both from our own experience and that of others on the advantages of pigs in which (a) all three known carbohydrate xenoantigens have been deleted (triple-knockout pigs), (b) two human complement-regulatory proteins (CD46, CD55) and two human coagulation-regulatory proteins (thrombomodulin, endothelial cell protein C receptor) are expressed, (c) the anti-apoptotic and "anti-inflammatory" molecule, human hemeoxygenase-1 is expressed, and (d) human CD47 is expressed to suppress elements of the macrophage and T-cell responses. Although many alternative genetic modifications could be made to an organ-source pig, we suggest that the genetic manipulations we identify above will all contribute to the success of the initial clinical pig kidney or heart transplants, and that the beneficial contribution of each individual manipulation is supported by considerable experimental evidence.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elena Federzoni
- Exponential Biotherapeutic Engineering, United Therapeutics, LaJolla, California
| | | | | |
Collapse
|
45
|
Chen YF, Yang X, Yang HJ. Heterologous Antibodies Adsorption in Xenotransplantation of a Landrace Piglet Kidney Into a Rhesus Monkey. Transplant Proc 2019; 51:987-992. [PMID: 30979492 DOI: 10.1016/j.transproceed.2019.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND To explore the adsorption of heterologous antibodies in 6 xenotransplants of Landrace piglet kidneys into rhesus monkeys. METHODS The Landrace piglets and rhesus monkeys were used as donors and recipients, respectively. The donor kidney was the left kidney excised from each Landrace piglet and lavaged with University of Wisconsin solution through the renal artery and vein ex vivo. The renal arteriovenous end of the recipient was preserved. After anastomosis of the renal artery and vein with the arteriovenous end of the recipient for reperfusion, a cross-lymphocyte cytotoxicity test of the heterogeneous kidney was performed. RESULTS All 6 Landrace piglet kidneys absorbed heterologous antibodies that were pre-existing in the rhesus macaques' kidneys. The cross-lymphocyte toxicity test was performed after the kidney were completely blackened. The cross-lymphocyte toxicity in all each heterogeneous kidney changed from strong positive to weak positive. CONCLUSIONS Heterologous antibodies were adsorbed in xenotransplants of Landrace piglet kidneys into rhesus monkeys. Xenotransplanted kidney can adsorb heterologous antibodies and consume relevant complements, which is a good model for research of hyperacute rejection in xenotransplantation.
Collapse
Affiliation(s)
- Y-F Chen
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - X Yang
- Wenjiang District People's Hospital, Chengdu, Sichuan, China
| | - H-J Yang
- Organ Transplant Center and Hepatobiliary Ward 3, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Cooper DKC. Experimental Pig Heart Xenotransplantation-Recent Progress and Remaining Problems. Ann Thorac Surg 2019; 107:989-992. [PMID: 30471272 DOI: 10.1016/j.athoracsur.2018.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
47
|
Abstract
Hepatitis (HEV) is widely distributed in pigs and is transmitted with increasing numbers to humans by contact with pigs, contaminated food and blood transfusion. The virus is mostly apathogenic in pigs but may enhance the pathogenicity of other pig viruses. In humans, infection can lead to acute and chronic hepatitis and extrahepatic manifestations. In order to stop the emerging infection, effective counter-measures are required. First of all, transmission by blood products can be prevented by screening all blood donations. Meat and sausages should be appropriately cooked. Elimination of the virus from the entire pork production can be achieved by sensitive testing and elimination programs including early weaning, colostrum deprivation, Caesarean delivery, embryo transfer, treatment with antivirals, protection from de novo infection, and possibly vaccination. In addition, contaminated water, shellfish, vegetables, and fruits by HEV-contaminated manure should be avoided. A special situation is given in xenotransplantation using pig cells, tissues or organs in order to alleviate the lack of human transplants. The elimination of HEV from pigs, other animals and humans is consistent with the One Health concept, preventing subclinical infections in the animals as well as preventing transmission to humans and disease.
Collapse
|
48
|
Al-Shehabi H, Fiebig U, Kutzner J, Denner J, Schaller T, Bannert N, Hofmann H. Human SAMHD1 restricts the xenotransplantation relevant porcine endogenous retrovirus (PERV) in non-dividing cells. J Gen Virol 2019; 100:656-661. [PMID: 30767852 DOI: 10.1099/jgv.0.001232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The release of porcine endogenous retrovirus (PERV) particles from pig cells is a potential risk factor during xenotransplantation by way of productively infecting the human transplant recipient. Potential countermeasures against PERV replication are restriction factors that block retroviral replication. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of dNTPs in non-cycling cells starving retroviral reverse transcription. We investigated the antiviral activity of human SAMHD1 against PERV and found that SAMHD1 potently restricts its reverse transcription in human monocytes, monocyte-derived dendritic cells (MDDC), or macrophages (MDM) and in monocytic THP-1 cells. Degradation of SAMHD1 by SIVmac Vpx or CRISPR/Cas9 knock-out of SAMHD1 allowed for PERV reverse transcription. Addition of deoxynucleosides alleviated the SAMHD1-mediated restriction suggesting that SAMHD1-mediated degradation of dNTPs restricts PERV replication in these human immune cells. In conclusion, our findings highlight SAMHD1 as a potential barrier to PERV transmission from pig transplants to human recipients during xenotransplantation.
Collapse
Affiliation(s)
- Hussein Al-Shehabi
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Uwe Fiebig
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Juliane Kutzner
- 2Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joachim Denner
- 3Robert Koch Fellow, Robert Koch Institute, Berlin, Germany
| | - Torsten Schaller
- 2Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Bannert
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany.,4Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henning Hofmann
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
49
|
Denner J. Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol J 2018; 15:171. [PMID: 30409210 PMCID: PMC6225623 DOI: 10.1186/s12985-018-1088-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Xenotransplantation using pig cells, tissues and organs may help to overcome the shortage of human tissues and organs for the treatment of tissue and organ failure. Progress in the prevention of immunological rejection using genetically modified pigs and new, more effective, immunosuppression regimens will allow clinical application of xenotransplantation in near future. However, xenotransplantation may be associated with the transmission of potentially zoonotic porcine microorganisms. Until now the only xenotransplantation-associated transmission was the transmission of the porcine cytomegalovirus (PCMV) into non-human primates. PCMV caused a significant reduction of the survival time of the pig transplant. Main body of the abstract Here the available publications were analysed in order to establish the mechanism how PCMV shortened the survival time of xenotransplants. PCMV is a herpesvirus related to the human cytomegalovirus and the human herpesviruses 6 and 7. These three human herpesviruses can cause serious disease among immunocompromised human individuals, including transplant recipients. It was shown that PCMV predominantly contributes to the reduction of transplant survival in non-human primates by disruption of the coagulation system and by suppression and exhaustion of the immune system. Conclusion Although it is still unknown whether PCMV infects primate cells including human cells, indirect mechanism of the virus infection may cause reduction of the xenotransplant survival in future clinical trials and therefore PCMV has to be eliminated from donor pigs.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Fellow, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
50
|
Burdorf L, Harris D, Dahi S, Laird C, Zhang T, Ali F, Shah A, Thompson M, Braileanu G, Cheng X, Sievert E, Schwartz E, Sendil S, Parsell DM, Redding E, Phelps CJ, Ayares DL, Azimzadeh AM, Pierson RN. Thromboxane and histamine mediate PVR elevation during xenogeneic pig lung perfusion with human blood. Xenotransplantation 2018; 26:e12458. [PMID: 30175863 DOI: 10.1111/xen.12458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Elevated pulmonary vascular resistance (PVR), platelet adhesion, coagulation activation, and inflammation are prominent features of xenolung rejection. Here, we evaluate the role of thromboxane and histamine on PVR, and their contribution to other lung xenograft injury mechanisms. METHODS GalTKO.hCD46 single pig lungs were perfused ex vivo with fresh heparinized human blood: lungs were either treated with 1-Benzylimidazole (1-BIA) combined with histamine receptor blocker famotidine (n = 4) or diphenhydramine (n = 6), 1-BIA alone (n = 6) or were left untreated (n = 9). RESULTS Six of the nine control experiments (GalTKO.hCD46 untreated), "survived" until elective termination at 4 hours. Without treatment, initial PVR elevation within the first 30 minutes resolved partially over the following hour, and increased progressively during the final 2 hours of perfusion. In contrast, 1-BIA, alone or in addition to either antihistamine treatment, was associated with low stable PVR. Combined treatments significantly lowered the airway pressure when compared to untreated reference. Although platelet and neutrophil sequestration and coagulation cascade activation were not consistently altered by any intervention, increased terminal wet/dry weight ratio in untreated lungs was significantly blunted by combined treatments. CONCLUSION Combined thromboxane and histamine pathway blockade prevents PVR elevation and significantly inhibits loss of vascular barrier function when GalTKO.hCD46 lungs are perfused with human blood. Platelet activation and platelet and neutrophil sequestration persist in all groups despite efficient complement regulation, and appear to occur independent of thromboxane and histamine antagonism. Our work identifies thromboxane and histamine as key mediators of xenolung injury and defines those pathways as therapeutic targets to achieve successful xenolung transplantation.
Collapse
Affiliation(s)
- Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Donald Harris
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Siamak Dahi
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Christopher Laird
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Tianshu Zhang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Franchesca Ali
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Aakash Shah
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Mercedes Thompson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Gheorghe Braileanu
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Xiangfei Cheng
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evelyn Sievert
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Evan Schwartz
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Selin Sendil
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Dawn M Parsell
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Emily Redding
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland
| | - Carol J Phelps
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Agnes M Azimzadeh
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard N Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, and VA Maryland Health Care System, Baltimore, Maryland.,Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|