1
|
Seeberger KL, Salama BF, Kelly S, Rosko M, Castro C, DesAulniers J, Korbutt GS. Heterogenous expression of endocrine and progenitor cells within the neonatal porcine pancreatic lobes-Implications for neonatal porcine islet xenotransplantation. Xenotransplantation 2023; 30:e12793. [PMID: 36748727 DOI: 10.1111/xen.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Neonatal porcine islets (NPIs) are a source of islets for xenotransplantation. In the pig, the pancreatic lobes remain separate, thus, when optimizing NPI isolation, the pancreatic lobes included in the pancreatic digest should be specified. These lobes are the duodenal (DL), splenic (SL) and connecting (CL) lobe that correspond to the head, body-tail, and uncinate process of the human pancreas. In this study we are the first to evaluate all three neonatal porcine pancreatic lobes and NPIs isolated from these lobes. We report, a significant difference in endocrine and progenitor cell composition between lobes, and observed pancreatic duct glands (PDG) within the mesenchyme surrounding exocrine ducts in the DL and CL. Following in vitro differentiation, NPIs isolated from each lobe differed significantly in the percent increase of endocrine cells and final cell composition. Compared to other recipients, diabetic immunodeficient mice transplanted with NPIs isolated from the SL demonstrated euglycemic control as early as 4 weeks (p < 0.05) and achieved normoglycemia by 6 weeks post-transplant (p < 0.01). For the first time we report significant differences between the neonatal porcine pancreatic lobes and demonstrate that NPIs from these lobes differ in xenograft function.
Collapse
Affiliation(s)
- Karen L Seeberger
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Bassem F Salama
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Mandy Rosko
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsea Castro
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Kwak K, Park JK, Shim J, Ko N, Kim HJ, Lee Y, Kim JH, Alexander M, Lakey JRT, Kim H, Choi K. Comparison of islet isolation result and clinical applicability according to GMP-grade collagenase enzyme blend in adult porcine islet isolation and culture. Xenotransplantation 2021; 28:e12703. [PMID: 34176167 PMCID: PMC8459292 DOI: 10.1111/xen.12703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Background Porcine islet xenotransplantation is a promising treatment for type 1 diabetes as an alternative to human pancreatic islet transplantation and long‐term insulin therapy. Several research groups have explored porcine islets as an alternative to the inconsistent and chronic shortage of pancreases from human organ donors. Studies have confirmed successful transplant of porcine islets into non‐human primate models of diabetes; however, in most cases, they require more than one adult porcine donor to achieve sufficient viable islet mass for sustained function. The importance of GMP‐grade reagents includes the following: specific enzymes utilized in the pancreatic isolation process were identified as a key factor in successful human clinical islet transplantation trials using cadaveric islets. As xenotransplantation clinical research progresses, isolation reagents and digestion enzymes play a key role in the consistency of the product and ultimately the outcome of the islet xenotransplant. In this study, we evaluated several commercially available enzyme blends that have been used for islet isolation. We evaluated their impact on islet isolation yield and subsequent islet function as part of our plan to bring xenotransplantation into clinical xenotransplantation trials. Methods Adult porcine islets were isolated from 16 to 17‐month‐old Yucatan miniature pigs following standard rapid procurement. Pigs weighed on average 48.71 ± 2.85 kg, and the produced pancreases were 39.51 ± 1.80 grams (mean ± SEM). After ductal cannulation, we evaluated both GMP‐grade enzymes (Collagenase AF‐1 GMP grade and Liberase MTF C/T GMP grade) and compared with standard non‐GMP enzyme blend (Collagenase P). Islet quality control assessments including islet yield, islet size (IEQ), membrane integrity (acridine orange/propidium iodide), and functional viability (GSIS) were evaluated in triplicate on day 1 post‐islet isolation culture. Results Islet yield was highest in the group of adult pigs where Collagenase AF‐1 GMP grade was utilized. The mean islet yield was 16 586 ± 1391 IEQ/g vs 8302 ± 986 IEQ/g from pancreases isolated using unpurified crude Collagenase P. The mean islet size was higher in Collagenase AF‐1 GMP grade with neutral protease than in Collagenase P and Liberase MTF C/T GMP grade. We observed no significant difference between the experimental groups, but in vitro islet function after overnight tissue culture was significantly higher in Collagenase AF‐1 GMP grade with neutral protease and Liberase MTF C/T GMP grade than the crude control enzyme group. As expected, the GMP‐grade enzyme has significantly lower endotoxin levels than the crude control enzyme group when measured. Conclusions This study validates the importance of using specifically blended GMP grade for adult pig islet isolation for xenotransplantation trials and the ability to isolate a sufficient number of viable islets from one adult pig to provide a sufficient number for islets for a clinical islet transplantation. GMP‐grade enzymes are highly efficient in increasing islet yield, size, viability, and function at a lower and acceptable endotoxin level. Ongoing research transplants these islets into animal models of diabetes to validate in vivo function. Also, these defined and reproducible techniques using GMP‐grade enzymes allow for continuance of our plan to advance to xenotransplantation of isolated pig islets for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael Alexander
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | | |
Collapse
|
3
|
Lau H, Corrales N, Rodriguez S, Luong C, Zaldivar F, Alexander M, Lakey JRT. An islet maturation media to improve the development of young porcine islets during in vitro culture. Islets 2020; 12:41-58. [PMID: 32459554 PMCID: PMC7527017 DOI: 10.1080/19382014.2020.1750933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The use of pancreata from pre-weaned piglets has the potential to serve as an unlimited alternative source of islets for clinical xenotransplantation. As pre-weaned porcine islets (PPIs) are immature and require prolonged culture, we developed an islet maturation media (IMM) and evaluated its effect on improving the quantity and quality of PPIs over 14 days of culture. METHODS PPIs were isolated from the pancreata of pre-weaned Yorkshire piglets (8-15 days old). Each independent islet isolation was divided for culture in either control Ham's F-10 media (n = 5) or IMM (n = 5) for 14 days. On day 3, 7 and 14 of culture, islets were assessed for islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of beta cells, and insulin secretion during glucose stimulation. RESULTS In comparison to control islets, culturing PPIs in IMM significantly increased islet yield. PPIs cultured in IMM also maintained a stable isolation index and viability throughout 14 days of culture. The insulin content, endocrine cellular composition, and differentiation of beta cells were significantly improved in PPIs cultured in IMM, which subsequently augmented their insulin secretory capacity in response to glucose challenge compared to control islets. CONCLUSIONS Culturing PPIs in IMM increases islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of endocrine progenitor cells toward beta cells, and insulin secretion. Due to the improved islet quantity and quality after in vitro culture, the use of IMM in the culture of PPIs will assist to advance the outcomes of clinical islet xenotransplantation.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Samuel Rodriguez
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Colleen Luong
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Frank Zaldivar
- Department of Pediatrics, Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- CONTACT Jonathan R. T. Lakey Department of Surgery and Biomedical Engineering, Clinical Islet Program, 333 City Blvd West, Suite 1600, Orange, CA92868, USA
| |
Collapse
|
4
|
Rodriguez S, Lau H, Corrales N, Heng J, Lee S, Stiner R, Alexander M, Lakey JRT. Characterization of chelator-mediated recovery of pancreatic islets from barium-stabilized alginate microcapsules. Xenotransplantation 2019; 27:e12554. [PMID: 31495985 DOI: 10.1111/xen.12554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.
Collapse
Affiliation(s)
- Samuel Rodriguez
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Hien Lau
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Sarah Lee
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Rachel Stiner
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Orange, CA, USA
| |
Collapse
|
5
|
Nagaya M, Hayashi A, Nakano K, Honda M, Hasegawa K, Okamoto K, Itazaki S, Matsunari H, Watanabe M, Umeyama K, Nagashima H. Distributions of endocrine cell clusters during porcine pancreatic development. PLoS One 2019; 14:e0216254. [PMID: 31075154 PMCID: PMC6510474 DOI: 10.1371/journal.pone.0216254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pancreatic islet xenotransplantation is a potential treatment for diabetes mellitus, and porcine pancreas may provide a readily available source of islets. Islets in juvenile pigs are smaller than those in young adult pigs, but the insulin content is very similar. In addition, as juvenile pigs are more easily reared in uncontaminated conditions, many researchers have conducted studies using pancreatic islets from juvenile pigs. We aimed to analyze the distributions of endocrine cell clusters by comprehensively evaluating juvenile porcine pancreatic development and to propose an appropriate age at which islets could be isolated from the juvenile porcine pancreas. Methods Splenic (SL) and duodenal lobe (DL) samples were collected from the pancreases of pigs aged 0–180 days (n = 3/day after birth). The chronological changes in endocrine cell clustering were analyzed in relation to morphological changes, cell characterization, numbers, islet areas, and gene expression. Results In juvenile pigs aged 0–21 days, the pancreas contained numerous endocrine cells, and compact islets appeared from 21 days of age. Well-defined small islets were seen at 28 days of age, and the clusters were denser in the SL than in the DL. At 35 days of age, the islets were morphologically similar to those observed at 180 days of age, and the greater number of islets was similar to that seen at 90 days of age. The differences in the islets’ cytoarchitecture between the lobes were negligible. The expression of β-cell-related genes was higher in the juvenile pancreas than in the adult pancreas, and the expression of neurogenin-3 decreased dramatically over time. Conclusions These findings may have implications for attempts to refine the most appropriate age for islet isolation from porcine donors. Focusing on porcine pancreatic islets isolated at around 35 days after birth may offer benefits regarding their xenotransplantation potential.
Collapse
Affiliation(s)
- Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Department of Immunology, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Japan
- * E-mail: (MN); (HN)
| | - Asuka Hayashi
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Michiyo Honda
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazutoshi Okamoto
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Shiori Itazaki
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- * E-mail: (MN); (HN)
| |
Collapse
|
6
|
Smith KE, Purvis WG, Davis MA, Min CG, Cooksey AM, Weber CS, Jandova J, Price ND, Molano DS, Stanton JB, Kelly AC, Steyn LV, Lynch RM, Limesand SW, Alexander M, Lakey JRT, Seeberger K, Korbutt GS, Mueller KR, Hering BJ, McCarthy FM, Papas KK. In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β-cell function, and transcriptomes. Xenotransplantation 2018; 25:e12432. [PMID: 30052287 DOI: 10.1111/xen.12432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, β-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, β-cell percentage, and β-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS The oxygen demand, membrane integrity, β-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.
Collapse
Affiliation(s)
- Kate E Smith
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Catherine G Min
- Department of Physiological Sciences, University of Arizona, Tucson, AZ, USA.,Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Craig S Weber
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Diana S Molano
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Alexander
- Department of Surgery, University of California-Irvine, Orange, CA, USA
| | | | - Karen Seeberger
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Gregory S Korbutt
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AL, Canada
| | - Kate R Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
7
|
Abstract
OBJECTIVES Exocrine pancreatic insufficiency (EPI) can have a significant impact on a child's growth and nutrition. Our aim was to evaluate the utility of direct endoscopic pancreatic function testing (ePFT) in pediatrics. METHODS A single-center retrospective chart review was performed of children who underwent ePFT from December 2007 through February 2015. Endoscopic pancreatic function testings were performed by 1 of 2 methods: (1) intravenous cholecystokinin, followed by the collection of a single duodenal aspirate at 10 minutes, or (2) intravenous cholecystokinin or secretin, followed by the collection of 3 duodenal aspirates at a 5, 10, and 15 minutes. Samples were tested for pH and enzyme activities. RESULTS A total of 508 ePFTs were performed (481 single-sample tests, 27 multiple-sample tests). Based on the multiple-sample group, enzyme levels for chymotrypsin, amylase, and lipase peaked at 5 minutes, followed by a decrease in activity over time. Exocrine pancreatic sufficiency was identified in 373 (73.4%) and EPI in 93 (18.3%). Exocrine pancreatic sufficiency analysis found all pancreatic enzyme activities significantly increase with age: trypsin, chymotrypsin, amylase, and lipase, (P < 0.05). CONCLUSIONS Endoscopic pancreatic function testing can be used in the evaluation of EPI in children. Normative data suggest that pancreatic enzyme activities mature with age.
Collapse
|
8
|
Steffen A, Kiss T, Schmid J, Schubert U, Heinke S, Lehmann S, Bornstein S, Ludwig B, Ludwig S. Production of high-quality islets from goettingen minipigs: Choice of organ preservation solution, donor pool, and optimal cold ischemia time. Xenotransplantation 2017; 24. [PMID: 28130838 DOI: 10.1111/xen.12284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/04/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The transplantation of porcine islets into man might soon become reality for patients with type 1 diabetes mellitus. Therefore, porcine islets of high quality and quantity, and a scalable isolation process with strict quality control will be an unconditional prerequisite to enable the best possible transplantation graft. In this study, we provide a comparative study evaluating islet isolation outcome and in vitro survival based upon donor age, organ preservation solution (OPS), and cold ischemia time (CIT). METHODS Goettingen minipigs of younger age (1 year) and retired breeder animals (3.5 years) were studied. Pancreata were harvested according to the standards of human organ retrieval including in situ cold perfusion with either Custodiol® -HTK or Belzer® UW solution. Pancreatic tissue was characterized by quantification of apoptotic cells. Islet isolations were performed according to a modified Ricordi method, and isolation outcome was assessed by determining islet particle numbers (IP), islet equivalents (IEQ), and isolation factor (IF). Isolated islets were cultured for 24 and 48 h for the assessment of in vitro survival. RESULTS Islet viability was significantly higher in Custodiol® -HTK preserved pancreas organs compared to Belzer® UW. Furthermore, organs harvested from retired breeder preserved in Custodiol® -HTK resulted in stable islet isolation yields even after prolonged CIT and showed superior survival rates of islets in vitro compared to the Belzer® UW group. Younger porcine donor organs resulted generally in lower islet yield and survival rates. CONCLUSIONS In summary, Custodiol® -HTK solution should be preferred over Belzer® UW solution for the preservation of pancreata from porcine origin. Custodiol® -HTK allows for maintaining islet viability and promotes reproducible isolation outcome and survival even after longer CIT. The usage of retired breeder animals over young animals for islet isolation is highly advisable to yield high quality and quantity.
Collapse
Affiliation(s)
- Anja Steffen
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Technische Universität Dresden, DZD-German Centre for Diabetes Research, Dresden, Germany
| | - Thomas Kiss
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janine Schmid
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Undine Schubert
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sophie Heinke
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Susann Lehmann
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Technische Universität Dresden, DZD-German Centre for Diabetes Research, Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.,Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Technische Universität Dresden, DZD-German Centre for Diabetes Research, Dresden, Germany.,Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ludwig
- Department of Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Cooper DK, Matsumoto S, Abalovich A, Itoh T, Mourad NI, Gianello PR, Wolf E, Cozzi E. Progress in Clinical Encapsulated Islet Xenotransplantation. Transplantation 2016; 100:2301-2308. [PMID: 27482959 PMCID: PMC5077652 DOI: 10.1097/tp.0000000000001371] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At the 2015 combined congress of the Cell Transplant Society, International Pancreas and Islet Transplant Association, and International Xenotransplantation Association, a symposium was held to discuss recent progress in pig islet xenotransplantation. The presentations focused on 5 major topics - (1) the results of 2 recent clinical trials of encapsulated pig islet transplantation, (2) the inflammatory response to encapsulated pig islets, (3) methods to improve the secretion of insulin by pig islets, (4) genetic modifications to the islet-source pigs aimed to protect the islets from the primate immune and/or inflammatory responses, and (5) regulatory aspects of clinical pig islet xenotransplantation. Trials of microencapsulated porcine islet transplantation to treat unstable type 1 diabetic patients have been associated with encouraging preliminary results. Further advances to improve efficacy may include (1) transplantation into a site other than the peritoneal cavity, which might result in better access to blood, oxygen, and nutrients; (2) the development of a more biocompatible capsule and/or the minimization of a foreign body reaction; (3) pig genetic modification to induce a greater secretion of insulin by the islets, and/or to reduce the immune response to islets released from damaged capsules; and (4) reduction of the inflammatory response to the capsules/islets by improvements in the structure of the capsules and/or in genetic engineering of the pigs and/or in some form of drug therapy. Ethical and regulatory frameworks for islet xenotransplantation are already available in several countries, and there is now a wider international perception of the importance of developing an internationally harmonized ethical and regulatory framework.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shinichi Matsumoto
- Otsuka Pharmaceutical Factory, Tateiwa, Muya-cho, Naruto Tokushima, Japan
| | | | - Takeshi Itoh
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka City, Fukuoka, Japan
| | - Nizar I. Mourad
- Laboratory of Surgery and Transplantation, Catholic University of Louvain, Brussels, Belgium
| | - Pierre R Gianello
- Laboratory of Surgery and Transplantation, Catholic University of Louvain, Brussels, Belgium
| | - Eckhard Wolf
- Gene Center, LMU Munich and German Center for Diabetes Research (DZD), Munich, Germany
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, and the Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| |
Collapse
|
10
|
Burlak C, Taylor TR. Xenotransplantation literature update, September-October 2015. Xenotransplantation 2015; 22:490-2. [PMID: 26669726 DOI: 10.1111/xen.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Christopher Burlak
- Schultz Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Travis R Taylor
- Department of Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|