1
|
Xia Q, Cao Y, Li J, Jiang J, Lu X, Deng L. Improving long-term postoperative survival in a porcine cardiac valve surgery model utilizing cardiopulmonary bypass via left thoracotomy: a single-center experience sharing insights. Front Cardiovasc Med 2025; 11:1427653. [PMID: 39844906 PMCID: PMC11751070 DOI: 10.3389/fcvm.2024.1427653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Objective The objective of this study was to improve long-term postoperative survival in a porcine cardiac valve surgery model by utilizing cardiopulmonary bypass (CPB) via left thoracotomy. The study aimed to share refined techniques and insights accumulated over years at a single-center animal clinical trial facility. Method A total of 196 Chinese Large White pigs weighing between 60 and 75 kg were used in the study. All animals underwent cardiac valve surgeries via left thoracotomy with CPB. Surgical techniques included mitral valve replacement, mitral valve repair, aortic valve replacement, OZAKI procedure, ascending aorta replacement, and left ventricular assist device implantation. Anesthesia and CPB protocols were optimized to minimize stress and complications. Postoperative care was standardized to enhance recovery and survival. Result All 196 pigs survived the surgical procedures, with no deaths reported. The mean surgical duration was 168.55 ± 38.75 min, CPB time was 114.89 ± 32.11 min, and aortic cross-clamp time was 76.75 ± 21.33 min. Automatic heart resumption occurred in 63.8% of pigs, while the remainder required electrical defibrillation or cardiac massage. The postoperative mechanical ventilation time was 2.44 ± 0.58 min, and the average drainage volume at 2 h postoperatively was 27.50 ± 9.70 ml. There were no cases of postoperative hemorrhage complications or blood transfusions, and surgical site infections occurred in only 1.5% of pigs. Conclusion The surgical approach utilizing left thoracotomy with CPB has proven effective in significantly enhancing long-term survival rates in porcine heart surgeries. The refined techniques and standardized operational procedures described in this study offer valuable insights for researchers aiming to improve the success of porcine heart valve surgical models. However, due to differences in animal anatomy, the applicability of this surgical approach to other animal models still requires further exploration.
Collapse
Affiliation(s)
- Qingping Xia
- Department of Science and Education, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yong Cao
- Department of Cardiovascular Surgery, The People’s Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Jialuan Li
- Silver Snake (Guangzhou) Medical Science and Technique Co., Ltd., Guangzhou, Guangdong, China
| | - Jie Jiang
- Silver Snake (Guangzhou) Medical Science and Technique Co., Ltd., Guangzhou, Guangdong, China
| | - Xuan Lu
- Silver Snake (Guangzhou) Medical Science and Technique Co., Ltd., Guangzhou, Guangdong, China
| | - Li Deng
- Department of Cardiovascular Surgery, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| |
Collapse
|
2
|
Bender M, Radan J, Reichart B, Leuschen M, Wall F, Mokelke M, Neumann E, Buttgereit I, Ayares D, Wolf E, Brenner P, Abicht JM, Längin M. Ultrasound Assessment of Pleural Effusions After Orthotopic Pig-to-Baboon Cardiac Xenotransplantation. Xenotransplantation 2024; 31:e70006. [PMID: 39552137 DOI: 10.1111/xen.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Pleural effusions develop frequently after cardiac surgery in humans. Lung ultrasound is an essential non-invasive tool in the diagnosis and treatment of these effusions. Pleural effusions also develop regularly after preclinical cardiac xenotransplantation experiments. Unlike in the human setting, modern ultrasound devices lack pre-installed tools for calculating the volume of pleural effusions in baboons. The aim of this study was to analyze ultrasound examinations of pleural effusions after orthotopic pig-to-baboon cardiac xenotransplantation experiments in order to develop a formula for calculating the effusion volume based on ultrasound measurements. METHODS Hearts from seven genetically modified (GGTA1-KO, hCD46/hTBM transgenic) juvenile pigs were orthotopically transplanted into male baboons. Postoperatively, the baboons were tested regularly for the development of pleural effusions using ultrasound. When thoracocentesis was required, the drained effusion volume (EV) was compared to ultrasound-derived calculations using various formulas. These calculations were based on measuring the distance between lung and diaphragm at the effusions' maximum height (Hmax). Subsequently, the most promising formula was used to describe the interobserver variability between trained and untrained staff members to predict effusion volumes based on ultrasound measurements. RESULTS Ultrasound measurement correlated very strongly with the absolute EV (r = 0.9156, p < 0.0001), with EV indexed to total body weight (r = 0.9344, p < 0.0001) and with EV indexed to body surface area (BSA) (r = 0.9394, p < 0.0001). The ratio between Hmax and EV increased with total body weight and BSA and also depended on the baboon species. The sonographic measurements taken by an experienced and an inexperienced observer showed only low interobserver variability. A Bland-Altman plot of both observers' measurements showed an overall bias of -2.39%. CONCLUSION Ultrasound imaging provides a simple and non-invasive tool for measuring pleural effusion quantity in baboons. This facilitates simple and efficient monitoring even in the hands of untrained personnel and may guide the decision-making to perform thoracocentesis.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Bender M, Abicht JM, Reichart B, Neumann E, Radan J, Mokelke M, Buttgereit I, Leuschen M, Wall F, Michel S, Ellgass R, Steen S, Paskevicius A, Lange A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Burgmann JM, Figueiredo C, Milusev A, Zollet V, Salimi-Afjani N, Despont A, Rieben R, Ledderose S, Walz C, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Binder U, Gebauer M, Skerra A, Längin M. Combination of Anti-CD40 and Anti-CD40L Antibodies as Co-Stimulation Blockade in Preclinical Cardiac Xenotransplantation. Biomedicines 2024; 12:1927. [PMID: 39200391 PMCID: PMC11351779 DOI: 10.3390/biomedicines12081927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies. To address these issues, we conducted six orthotopic pig-to-baboon cardiac xenotransplantation experiments, combining a chimeric anti-CD40 antibody with an investigational long-acting PASylated anti-CD40L Fab fragment. The combination therapy effectively resulted in animal survival with a rate comparable to a previous study that utilized anti-CD40 monotherapy. Importantly, no incidence of thromboembolic events associated with the administration of the anti-CD40L PAS-Fab was observed. Two experiments failed early because of technical reasons, two were terminated deliberately after 90 days with the baboons in excellent condition and two were extended to 120 and 170 days, respectively. Unexpectedly, and despite the absence of any clinical signs, histopathology revealed fungal infections in all four recipients. This study provides, for the first time, insights into a combination therapy with anti-CD40/anti-CD40L antibodies to block this immune checkpoint.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Valentina Zollet
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Neda Salimi-Afjani
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uli Binder
- XL-protein GmbH, 85354 Freising, Germany
| | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
4
|
Bender M, Reichart B, Figueiredo C, Burgmann JM, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Egerer S, Lange A, Baehr A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Hagl C, Gebauer M, Binder U, Skerra A, Ayares D, Wolf E, Schmoeckel M, Brenner P, Längin M, Abicht JM. An Approach to Controlling Inflammation and Coagulation in Pig-to-Baboon Cardiac Xenotransplantation. Xenotransplantation 2024; 31:e12877. [PMID: 39077824 PMCID: PMC11932330 DOI: 10.1111/xen.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
6
|
Längin M, Buttgereit I, Reichart B, Panelli A, Radan J, Mokelke M, Neumann E, Bender M, Michel S, Ellgass R, Ying J, Fresch AK, Mayr T, Steen S, Paskevicius A, Egerer S, Bähr A, Kessler B, Klymiuk N, Binder U, Skerra A, Ledderose S, Müller S, Walz C, Hagl C, Wolf E, Ayares D, Brenner P, Abicht JM. Xenografts Show Signs of Concentric Hypertrophy and Dynamic Left Ventricular Outflow Tract Obstruction After Orthotopic Pig-to-baboon Heart Transplantation. Transplantation 2023; 107:e328-e338. [PMID: 37643028 DOI: 10.1097/tp.0000000000004765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Orthotopic cardiac xenotransplantation has seen substantial advancement in the last years and the initiation of a clinical pilot study is close. However, donor organ overgrowth has been a major hurdle for preclinical experiments, resulting in loss of function and the decease of the recipient. A better understanding of the pathogenesis of organ overgrowth after xenotransplantation is necessary before clinical application. METHODS Hearts from genetically modified ( GGTA1-KO , hCD46/hTBM transgenic) juvenile pigs were orthotopically transplanted into male baboons. Group I (control, n = 3) received immunosuppression based on costimulation blockade, group II (growth inhibition, n = 9) was additionally treated with mechanistic target of rapamycin inhibitor, antihypertensive medication, and fast corticoid tapering. Thyroid hormones and insulin-like growth factor 1 were measured before transplantation and before euthanasia, left ventricular (LV) growth was assessed by echocardiography, and hemodynamic data were recorded via a wireless implant. RESULTS Insulin-like growth factor 1 was higher in baboons than in donor piglets but dropped to porcine levels at the end of the experiments in group I. LV mass increase was 10-fold faster in group I than in group II. This increase was caused by nonphysiological LV wall enlargement. Additionally, pressure gradients between LV and the ascending aorta developed, and signs of dynamic left ventricular outflow tract (LVOT) obstruction appeared. CONCLUSIONS After orthotopic xenotransplantation in baboon recipients, untreated porcine hearts showed rapidly progressing concentric hypertrophy with dynamic LVOT obstruction, mimicking hypertrophic obstructive cardiomyopathy in humans. Antihypertensive and antiproliferative drugs reduced growth rate and inhibited LVOT obstruction, thereby preventing loss of function.
Collapse
Affiliation(s)
- Matthias Längin
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Alessandro Panelli
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Martin Bender
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jiawei Ying
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ann Kathrin Fresch
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | | | - Arne Skerra
- Lehrstuhl für Biologische Chemie, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Susanna Müller
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | | | - Paolo Brenner
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Rao JS, Burlak C. Xenotransplantation literature update for September - October 2020. Xenotransplantation 2020; 28:e12665. [PMID: 33314409 DOI: 10.1111/xen.12665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Nanno Y, Burlak C. Xenotransplantation literature update, July/August 2020. Xenotransplantation 2020; 27:e12653. [PMID: 33020943 DOI: 10.1111/xen.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshihide Nanno
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Längin M, Konrad M, Reichart B, Mayr T, Vandewiele S, Postrach J, Mokelke M, Radan J, Brenner P, Bauer A, Abicht J. Hemodynamic evaluation of anesthetized baboons and piglets by transpulmonary thermodilution: Normal values and interspecies differences with respect to xenotransplantation. Xenotransplantation 2019; 27:e12576. [DOI: 10.1111/xen.12576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Matthias Längin
- Department of Anaesthesiology University Hospital LMU Munich Munich Germany
| | | | - Bruno Reichart
- Transregional Collaborative Research Center 127 Walter Brendel Centre of Experimental Medicine LMU Munich Munich Germany
| | - Tanja Mayr
- Department of Anaesthesiology University Hospital LMU Munich Munich Germany
| | - Stephanie Vandewiele
- Transregional Collaborative Research Center 127 Walter Brendel Centre of Experimental Medicine LMU Munich Munich Germany
- Dr. von Haunersches Kinderspital Kinderklinik und Kinderpoliklinik der LMU München Munich Germany
| | - Johannes Postrach
- Transregional Collaborative Research Center 127 Walter Brendel Centre of Experimental Medicine LMU Munich Munich Germany
- Privatklinik Dr. Robert Schindlbeck GmbH &Co KG Department of Medicine Herrsching am Ammersee Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127 Walter Brendel Centre of Experimental Medicine LMU Munich Munich Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127 Walter Brendel Centre of Experimental Medicine LMU Munich Munich Germany
| | - Paolo Brenner
- Department of Cardiac Surgery University Hospital LMU Munich Munich Germany
| | - Andreas Bauer
- Department of Anaesthesiology and Intensive Care RoMed Klinikum Rosenheim Rosenheim Germany
| | - Jan‐Michael Abicht
- Department of Anaesthesiology University Hospital LMU Munich Munich Germany
| |
Collapse
|
10
|
Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjöberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schönmann U, Kaup FJ, Hagl C, Wolf E, Klymiuk N, Brenner P, Abicht JM. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 2018; 564:430-433. [PMID: 30518863 DOI: 10.1038/s41586-018-0765-z] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/02/2018] [Indexed: 01/01/2023]
Abstract
Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1-3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.
Collapse
Affiliation(s)
- Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.,Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.,Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany.
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Buchholz
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Sonja Guethoff
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany.,Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexey Dashkevich
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Stefanie Egerer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Andreas Bauer
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Maks Mihalj
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alessandro Panelli
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Lara Issl
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Jiawei Ying
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ann Kathrin Fresch
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Ines Buttgereit
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Fabian Werner
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Isabelle Lutzmann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Trygve Sjöberg
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Liao Qiuming
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Riccardo Sfriso
- Department for BioMedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Katharina Klett
- I. Medizinische Klinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Rabea Hinkel
- I. Medizinische Klinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Kupatt
- I. Medizinische Klinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Almuth Falkenau
- Institute of Veterinary Pathology, LMU Munich, Munich, Germany
| | - Simone Reu
- Institute of Pathology, Medical Faculty, LMU Munich, Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Rudolf Herzog
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Arne Skerra
- Munich Center for Integrated Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | | | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | | | | | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Paolo Brenner
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany.,Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany.,Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Chan JL, Miller JG, Singh AK, Horvath KA, Corcoran PC, Mohiuddin MM. Consideration of appropriate clinical applications for cardiac xenotransplantation. Clin Transplant 2018; 32:e13330. [PMID: 29956382 DOI: 10.1111/ctr.13330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
The field of cardiac xenotransplantation has entered an exciting era due to recent advances in the field. Although several hurdles remain, the use of rapidly evolving transgenic technology has the potential to address current allogeneic donor pool constraints and mechanical circulatory system device limitations. The success of xenotransplantation will undoubtedly be dependent on specific patient selection criteria. Defining these particular indications for xenotransplantation is important as we approach the possibility of clinical applications.
Collapse
Affiliation(s)
- Joshua L Chan
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin G Miller
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avneesh K Singh
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith A Horvath
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress. Transplantation 2018; 102:1050-1058. [PMID: 29538262 PMCID: PMC7228622 DOI: 10.1097/tp.0000000000002171] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023]
Abstract
There has recently been considerable progress in the results of pig organ transplantation in nonhuman primates, largely associated with the availability of (i) pigs genetically engineered to overcome coagulation dysregulation, and (ii) novel immunosuppressive agents. The barriers of thrombotic microangiopathy and/or consumptive coagulation were believed to be associated with (i) activation of the graft vascular endothelial cells by a low level of antipig antibody binding and/or complement deposition and/or innate immune cell activity, and (ii) molecular incompatibilities between the nonhuman primate and pig coagulation-anticoagulation systems. The introduction of a human coagulation-regulatory transgene, for example, thrombomodulin, endothelial protein C receptor, into the pig vascular endothelial cells has contributed to preventing a procoagulant state from developing, resulting in a considerable increase in graft survival. In the heterotopic (non-life-supporting) heart transplant model, graft survival has increased from a maximum of 179 days in 2005 to 945 days. After life-supporting kidney transplantation, survival has been extended from 90 days in 2004 to 499 days. In view of the more complex coagulation dysfunction seen after pig liver and, particularly, lung transplantation, progress has been less dramatic, but the maximum survival of a pig liver has been increased from 7 days in 2010 to 29 days, and of a pig lung from 4 days in 2007 to 9 days. There is a realistic prospect that the transplantation of a kidney or heart, in combination with a conventional immunosuppressive regimen, will enable long-term recipient survival.
Collapse
Affiliation(s)
- Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| |
Collapse
|
13
|
Qin G, Su Y, Sjöberg T, Steen S. Oxygen Consumption of the Aerobically-Perfused Cardioplegic Donor Heart at Different Temperatures. Ann Transplant 2018. [PMID: 29686223 PMCID: PMC6248259 DOI: 10.12659/aot.907753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background The aim of this study was to investigate the oxygen consumption of explanted aerobically-perfused cardioplegic porcine hearts at different temperatures. Material/Methods Explanted hearts from 30 pigs weighing 50 kg were randomized into 5 groups. The hearts received continuous antegrade perfusion within a temperature-controlled sealed system. The perfusate consisted of an albumin-containing hyperoncotic cardioplegic nutrition solution with erythrocytes to a hematocrit of 10%. Five temperatures were studied: 37, 30, 22, 15, and 8°C. When the erythrocytes in the perfusate were fully saturated, the oxygenator was excluded from the circuit and blood gases were analyzed periodically until the erythrocytes had desaturated to less than 20%. Between 80% and 60% saturation the desaturation curves were linear in all groups and the oxygen consumption was calculated from this part of the curves. Results The weight of the hearts was 208±4 g (mean ±SEM, n=30). The oxygen consumption in mL/min/100 g heart tissue was (mean ±SEM, n=6 in each group) 37°C: 1.10±0.04; 30°C: 0.58±0.02; 22°C: 0.33±0.01; 15°C: 0.21±0.01; and 8°C: 0.16±0.02. Conclusions The oxygen consumption of the cardioplegic perfused pig heart at normothermia was 1.1 mL/min/100 g and was reduced by 85% to 0.16 mL/min/100 g at 8°C.
Collapse
Affiliation(s)
- Guangqi Qin
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yang Su
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Trygve Sjöberg
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Porcine to Human Heart Transplantation: Is Clinical Application Now Appropriate? J Immunol Res 2017; 2017:2534653. [PMID: 29238731 PMCID: PMC5697125 DOI: 10.1155/2017/2534653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/08/2017] [Indexed: 11/24/2022] Open
Abstract
Cardiac xenotransplantation (CXTx) is a promising solution to the chronic shortage of donor hearts. Recent advancements in immune suppression have greatly improved the survival of heterotopic CXTx, now extended beyond 2 years, and life-supporting kidney XTx. Advances in donor genetic modification (B4GALNT2 and CMAH mutations) with proven Gal-deficient donors expressing human complement regulatory protein(s) have also accelerated, reducing donor pig organ antigenicity. These advances can now be combined and tested in life-supporting orthotopic preclinical studies in nonhuman primates and immunologically appropriate models confirming their efficacy and safety for a clinical CXTx program. Preclinical studies should also allow for organ rejection to develop xenospecific assays and therapies to reverse rejection. The complexity of future clinical CXTx presents a substantial and unique set of regulatory challenges which must be addressed to avoid delay; however, dependent on these prospective life-supporting preclinical studies in NHPs, it appears that the scientific path forward is well defined and the era of clinical CXTx is approaching.
Collapse
|
15
|
Walters EM, Kerns K, Burlak C. Xenotransplantation literature update, May/June 2017. Xenotransplantation 2017; 24. [PMID: 28741697 DOI: 10.1111/xen.12323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Eric M Walters
- Division of Animal Sciences, National Swine Resource and Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institutes, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|