1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2024:00003226-990000000-00715. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Hashimoto Y, Negishi J, Funamoto S, Kimura T, Kobayashi H, Oshika T, Kishida A. Preparation, physico-biochemical characterization, and proteomic analysis of highly transparent corneal extracellular matrices for lamellar keratoplasty and tissue-engineered cornea construction. Mater Today Bio 2024; 28:101241. [PMID: 39328788 PMCID: PMC11426139 DOI: 10.1016/j.mtbio.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Corneal opacity and deformation, which often require corneal transplantation for treatment, are among the leading causes of monocular blindness. To restore corneal clarity and integrity, there is a need for an artificial stroma that not only matches the transparency of donated human cornea but also effectively integrates to the corneal tissue. In this study, a transparent decellularized cornea was successfully developed using the high hydrostatic pressure method with processing conditions optimized for corneal decellularization. Biochemical analyses demonstrated the effective removal of cellular components from the transparent decellularized corneas, while preserving collagen and glycosaminoglycans. Proteome analysis also revealed that core matrisome and matrisome-associated proteins remained following decellularization, similar to the composition observed in untreated corneas. The light transmittance of the transparent decellularized corneas was 86.4 ± 1.5 % in the visible region, comparable to that of donated human corneas. No complications, such as angiogenesis, were observed following interlamellar corneal transplantation in rabbits. The grafts were almost imperceptible immediately following surgery and achieved complete transparency within a few days, becoming indistinguishable even under a microscope. The transparent decellularized cornea presented here has promising potential as a material for application in lamellar keratoplasty.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Seiichi Funamoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Department of Biomedical Engineering, Faculty of Life Science, Toyo University, 48-1 Oka, Asaka-shi, Saitama, 351-8510, Japan
| | - Hisatoshi Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
3
|
Hao Y, Zhou J, Tan J, Xiang F, Qin Z, Yao J, Li G, Yang M, Zeng L, Zeng W, Zhu C. Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea. Bioact Mater 2023; 29:265-278. [PMID: 37600931 PMCID: PMC10432718 DOI: 10.1016/j.bioactmat.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
Cross-linking agents are frequently used to restore corneal properties after decellularization, and it is especially important to select an appropriate method to avoid excessive cross-linking. In addition, how to promote wound healing and how to improve scar formation require further investigation. To ensure the safety and efficacy of animal-derived products, we designed bioartificial corneas (BACs) according to the criteria for Class III medical devices. Our BACs do not require cross-linking agents and increase mechanical strength via self-cross-linking of aldehyde-modified hyaluronic acid (AHA) and carboxymethyl chitosan (CMC) on the surface of decellularized porcine corneas (DPCs). The results showed that the BACs had good biocompatibility and transparency, and the modification enhanced their antibacterial and anti-inflammatory properties in vitro. Preclinical animal studies showed that the BACs can rapidly regenerate the epithelium and restore vision within a month. After 3 months, the BACs were gradually filled with epithelial, stromal, and neuronal cells, and after 6 months, their transparency and histology were almost normal. In addition, side effects such as corneal neovascularization, conjunctival hyperemia, and ciliary body hyperemia rarely occur in vivo. Therefore, these BACs show promise for clinical application for the treatment of infectious corneal ulcers and as a temporary covering for corneal perforations to achieve the more time.
Collapse
Affiliation(s)
- Yansha Hao
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Jingting Zhou
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Feng Xiang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Zhongliang Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
- Zhong Zhi Yi Gu Research Institute, Chongqing Jiukang Medical Research Institute Co., Ltd.,. China
| | - Jun Yao
- Hong Chang Biotechnology Co., Ltd, Guangzhou, 510700, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Mingcan Yang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Lingqin Zeng
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Army Medical University, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burnand Combined Injury, Chongqing, China
| |
Collapse
|
4
|
Hoffman JJ, Arunga S, Mohamed Ahmed AHA, Hu VH, Burton MJ. Management of Filamentous Fungal Keratitis: A Pragmatic Approach. J Fungi (Basel) 2022; 8:1067. [PMID: 36294633 PMCID: PMC9605596 DOI: 10.3390/jof8101067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2023] Open
Abstract
Filamentous fungal infections of the cornea known as filamentous fungal keratitis (FK) are challenging to treat. Topical natamycin 5% is usually first-line treatment following the results of several landmark clinical trials. However, even when treated intensively, infections may progress to corneal perforation. Current topical antifungals are not always effective and are often unavailable. Alternatives topical therapies to natamycin include voriconazole, chlorhexidine, amphotericin B and econazole. Surgical therapy, typically in the form of therapeutic penetrating keratoplasty, may be required for severe cases or following corneal perforation. Alternative treatment strategies such as intrastromal or intracameral injections of antifungals may be used. However, there is often no clear treatment strategy and the evidence to guide therapy is often lacking. This review describes the different treatment options and their evidence and provides a pragmatic approach to the management of fungal keratitis, particularly for clinicians working in tropical, low-resource settings where fungal keratitis is most prevalent.
Collapse
Affiliation(s)
- Jeremy J. Hoffman
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Sagarmatha Choudhary Eye Hospital, Lahan 56500, Nepal
| | - Simon Arunga
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Ophthalmology, Mbarara University of Science and Technology, Mbarara P.O. Box 1410, Uganda
| | - Abeer H. A. Mohamed Ahmed
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Victor H. Hu
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- National Institute for Health Research Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
5
|
Raj N, Vanathi M, Ahmed NH, Gupta N, Lomi N, Tandon R. Recent Perspectives in the Management of Fungal Keratitis. J Fungi (Basel) 2021; 7:jof7110907. [PMID: 34829196 PMCID: PMC8621027 DOI: 10.3390/jof7110907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/28/2022] Open
Abstract
Mycotic keratitis is common in warm, humid regions with a varying profile of pathogenic fungi according to geographical origin, socioeconomic status, and climatic condition. Clinical diagnosis can be challenging in difficult cases and those refractory to treatment. Fungal hyphae on microscopic examination and culture isolation have been the gold standard in the laboratory diagnosis of fungal keratitis. A culture isolate of the aetiological fungus is essential to perform antifungal susceptibility testing. As the culture isolation of fungi is time-consuming, causing delays in the initiation of treatment, newer investigative modalities such as in vivo confocal microscopy and molecular diagnostic methods have recently gained popularity. Molecular diagnostic techniques now help to obtain a rapid diagnosis of fungal keratitis. Genomic approaches are based on detecting amplicons of ribosomal RNA genes, with internal transcribed spacers being increasingly adopted. Metagenomic deep sequencing allows for rapid and accurate diagnosis without the need to wait for the fungus to grow. This is also helpful in identifying new emerging strains of fungi causing mycotic keratitis. A custom-tear proteomic approach will probably play an important diagnostic role in future in the management of mycotic keratitis. Positive repeat cultures are being suggested as an important gauge indicative of a poor prognosis. Positive repeat fungal cultures help to modify a treatment regimen by increasing its frequency, providing the addition of another topical and oral antifungal agent along with close follow-up for perforation and identifying need for early therapeutic keratoplasty. The role of collagen crosslinking in the treatment of fungal keratitis is not convincingly established. Rapid detection by multiplex PCR and antifungal susceptibility testing of the pathogenic fungi, adopted into a routine management protocol of fungal keratitis, will help to improve treatment outcome. Early therapy is essential in minimizing damage to the corneal tissue, thereby providing a better outcome. The role of conventional therapy with polyenes, systemic and targeted therapy of antifungal agents, newer azoles and echinocandins in fungal keratitis has been widely studied in recent times. Combination therapy can be more efficacious in comparison to monotherapy. Given the diversity of fungal aetiology, the emergence of new corneal pathogenic fungi with varying drug susceptibilities, increasing the drug resistance to antifungal agents in some genera and species, it is perhaps time to adopt recent molecular methods for precise identification and incorporate antifungal susceptibility testing as a routine.
Collapse
Affiliation(s)
- Nimmy Raj
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Murugesan Vanathi
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
- Correspondence: ; Tel.: +91-11-26593010; Fax: +91-11-26588919
| | - Nishat Hussain Ahmed
- Ocular Microbiology Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India;
| | - Noopur Gupta
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Neiwete Lomi
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| | - Radhika Tandon
- Cornea, Lens & Refractive Surgery Services—Dr R P Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi 110029, India; (N.R.); (N.G.); (N.L.); (R.T.)
| |
Collapse
|
6
|
Chen Y, Zhang L, Liu Z, Liu Q, Gao M. Efficacy of Lamellar Keratoplasty with Acellular Porcine Corneal Stroma in Treatment for Infectious Central and Peripheral Corneal Ulcers. Ther Clin Risk Manag 2021; 17:623-634. [PMID: 34140774 PMCID: PMC8203272 DOI: 10.2147/tcrm.s309742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background The aim of this study was to investigate the efficacy of acellular porcine corneal stroma (APCS) transplantation in the treatment of infectious central and peripheral corneal ulcers. Methods A total of 45 patients with infectious corneal ulcers who had undergone lamellar keratoplasty using APCS grafts were included. Among these, 24 had lesions located near the pupil (infectious central corneal ulcer group) and 21 had lesions located in the limbus or around the cornea (infectious peripheral corneal ulcer group). Efficacy was assessed in terms of best-corrected visual acuity, graft transparency, corneal neovascularization, corneal reepithelialization, survival rate, and postoperative complications. Results Baseline characteristics showed that poor visual acuity and larger-diameter APCS graft in the infectious central corneal ulcer group were comparable with the infectious peripheral corneal ulcer grouper group (P<0.05). After lamellar keratoplasty using APCS grafts, no obvious differences were observed in aspects of graft transparency, corneal neovascularization, or survival rate (P>0.05). Postoperative complications, ie, delayed corneal epithelial healing, rejection episode, recurrence of infection, and graft melting, were not significantly different between the two groups (P>0.05). Visual acuity in bothgroups had improved significantly at 3 months and 6 months postoperation, respectively. Conclusion APCS transplantation is safe and efficacious for treating infectious central and peripheral corneal ulcers. Despite its good efficacy, APCS-graft size, implant position, patient indications, and postoperative management should be kept in mind in treatment for infectious corneal ulcers in different locations.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Linlin Zhang
- Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Zhiling Liu
- Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Qiming Liu
- Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Minghong Gao
- Department of Ophthalmology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| |
Collapse
|