1
|
Ramírez-Díaz C, Kolmann MA, Peredo CM, Cruz-Escalona VH, Peña R. Cranial musculature of batoids: A standardized nomenclature. Anat Rec (Hoboken) 2025; 308:163-179. [PMID: 38924302 DOI: 10.1002/ar.25527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Batoids (rays and skates) are cartilaginous fishes whose jaws are not articulated directly to the neurocranium. The only point of contact between them are the hyomandibular cartilages, resulting in a unique mandibular suspension called euhyostyly. Due to this decoupling of the jaws from the skull, muscles play an essential role in modulating mandibular movements during the feeding process, especially during mandibular protrusion. The main objectives of our study were: (1) to examine the mandibular musculature of eight batoid species from different orders in the Batoidea and (2) establish a standardized musclulature terminology for future comparative myological studies in batoids. For each muscle bundle, the general characteristics of each cranial muscle were described and their origin and insertions were identified. The number of muscle bundles differed intraspecifically. On the dorsal surface, we reported the first evidence of the presence of the precranial muscle (PCM) in U. halleri, as well as the ethmoideo-parethmoidalis muscle (ETM) in R. velezi, P. glaugostigma and Z. exasperata; in addition, the insertion of the spiracularis muscle (SP) extended to the ventral surface of the oropharyngeal tract in myliobatiforms. On the ventral surface of the head, both N. entemedor and M. californica exhibited additional muscles in the mandibular area. These muscles were renamed as part of the standardization of mandibular terminology: the depressor mandibularis minor (DMM) in N. entemedor and the adductor mandibulae profundus (AMP) in M. californica. The standardization of terminology is essential for futures studies of the mandibular apparatus in batoids, to facilitate the morphological description of muscles in species without anatomical accounts and for continuity in broader comparative analyses.
Collapse
Affiliation(s)
- C Ramírez-Díaz
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| | - M A Kolmann
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - C M Peredo
- Department of Biological Sciences, Miami University, Oxford, Ohio, USA
| | - V H Cruz-Escalona
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| | - R Peña
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico
| |
Collapse
|
2
|
Romanov AV, Shakhparonov VV, Gerasimov KB, Korzun LP. Occipital-synarcual joint mobility in ratfishes (Chimaeridae) and its possible adaptive role. J Morphol 2024; 285:e21740. [PMID: 38858850 DOI: 10.1002/jmor.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (Chimaera monstrosa and Chimaera phantasma) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The m. epaxialis is capable of elevating the head, the m. coracomandibularis is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the m. lateroventralis, for which this function was proposed for the first time. The first description of the m. epaxialis profundus is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.
Collapse
Affiliation(s)
- Alexey V Romanov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir V Shakhparonov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Kyrill B Gerasimov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid P Korzun
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering. Sci Rep 2021; 11:19836. [PMID: 34615907 PMCID: PMC8494898 DOI: 10.1038/s41598-021-99338-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The lamprey represents the oldest group of living vertebrates and has been a key organism in various research fields such as evolutionary developmental biology and neuroscience. However, no knock-in technique for this animal has been established yet, preventing application of advanced genetic techniques. Here, we report efficient generation of F0 knock-in lampreys by CRISPR-Cas9-mediated genome editing. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) for genome digestion, a sgRNA for donor plasmid digestion, and Cas9 mRNA. Targeting different genetic loci, we succeeded in generating knock-in lampreys expressing photoconvertible protein Dendra2 as well as those expressing EGFP. With its simplicity, design flexibility, and high efficiency, we propose that the present method has great versatility for various experimental uses in lamprey research and that it can also be applied to other “non-model” organisms.
Collapse
|
5
|
Dearden RP, Mansuit R, Cuckovic A, Herrel A, Didier D, Tafforeau P, Pradel A. The morphology and evolution of chondrichthyan cranial muscles: A digital dissection of the elephantfish Callorhinchus milii and the catshark Scyliorhinus canicula. J Anat 2021; 238:1082-1105. [PMID: 33415764 PMCID: PMC8053583 DOI: 10.1111/joa.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
The anatomy of sharks, rays, and chimaeras (chondrichthyans) is crucial to understanding the evolution of the cranial system in vertebrates due to their position as the sister group to bony fishes (osteichthyans). Strikingly different arrangements of the head in the two constituent chondrichthyan groups-holocephalans and elasmobranchs-have played a pivotal role in the formation of evolutionary hypotheses targeting major cranial structures such as the jaws and pharynx. However, despite the advent of digital dissections as a means of easily visualizing and sharing the results of anatomical studies in three dimensions, information on the musculoskeletal systems of the chondrichthyan head remains largely limited to traditional accounts, many of which are at least a century old. Here, we use synchrotron tomographic data to carry out a digital dissection of a holocephalan and an elasmobranch widely used as model species: the elephantfish, Callorhinchus milii, and the small-spotted catshark, Scyliorhinus canicula. We describe and figure the skeletal anatomy of the head, labial, mandibular, hyoid, and branchial cartilages in both taxa as well as the muscles of the head and pharynx. In Callorhinchus, we make several new observations regarding the branchial musculature, revealing several previously unreported or ambiguously characterized muscles, likely homologous to their counterparts in the elasmobranch pharynx. We also identify a previously unreported structure linking the pharyngohyal of Callorhinchus to the neurocranium. Finally, we review what is known about the evolution of chondrichthyan cranial muscles from their fossil record and discuss the implications for muscle homology and evolution, broadly concluding that the holocephalan pharynx is likely derived from a more elasmobranch-like form which is plesiomorphic for the chondrichthyan crown group. This dataset has great potential as a resource, particularly for researchers using these model species for zoological research, functional morphologists requiring models of musculature and skeletons, as well as for palaeontologists seeking comparative models for extinct taxa.
Collapse
Affiliation(s)
- Richard P Dearden
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| | - Rohan Mansuit
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France.,UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Anthony Herrel
- UMR 7179 (MNHN-CNRS) MECADEV, Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Dominique Didier
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Alan Pradel
- CR2P, Centre de Recherche en Paléontologie-Paris, Muséum national d'Histoire naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, Paris cedex 05, France
| |
Collapse
|
6
|
Diogo R. Not deconstructing serial homology, but instead, the a priori assumption that it generally involves ancestral anatomical similarity: An answer to Kuznetsov's paper. J Morphol 2020; 281:1628-1633. [PMID: 33068319 DOI: 10.1002/jmor.21273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023]
Abstract
I am very thankful to Kuznetsov for his comments on our recent paper about serial structures published in this journal. I hope this is just the beginning of a much wider, and holistic, discussion on the evolution of serial homologous structures, and of so-called "serial structures" in general, whether they are truly serial homologs or the secondary result of homoplasy. Strangely, Kuznetsov seems to have missed the main point of our paper, what is particularly puzzling as this point is clearly made in the very title of our paper. For instance, he states that "Siomava et al. claim that the serial homologues are false because they are ancestrally anisomeric (dissimilar)' and that" Siomava et al., (Siomava et al., Journal of Morphology, 2020, 281, 1110-1132) expected that if serial homology was true, then the serial homologs would be identical at the start and then only diverge. " However, our paper clearly did not state this. Instead, we stated that (a) serial homology is a real phenomenon, and (b) ancestral dissimilarity is actually likely the norm, and not the exception, within serial homology. In particular, our paper showed that, as clearly stated in its title and abstract, within the evolution of serial homologues these structures "many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism." Serial homology is therefore a genuine and much widespread phenomenon within the evolution of life in this planet. It is clearly one of the most important issues-and paradoxically one of the less understood, precisely because of the a priori acceptance of long-standing assumptions that have never been empirically tested, some of them repeated in Kuznetsov's paper-within macroevolution and comparative anatomy.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Diogo R. Cranial or postcranial—Dual origin of the pectoral appendage of vertebrates combining the fin‐fold and gill‐arch theories? Dev Dyn 2020; 249:1182-1200. [DOI: 10.1002/dvdy.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
8
|
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev Biol 2019; 91:2-12. [DOI: 10.1016/j.semcdb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 11/16/2022]
|
9
|
Naumann B, Schmidt J, Olsson L. FoxN3
is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog,
Xenopus laevis
(Lissamphibia: Anura: Pipidae). Dev Dyn 2019; 248:323-336. [DOI: 10.1002/dvdy.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Benjamin Naumann
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Jennifer Schmidt
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| | - Lennart Olsson
- Institut für Zoologie und EvolutionsforschungFriedrich‐Schiller‐Universität Jena Germany
| |
Collapse
|
10
|
|
11
|
Ziermann JM, Clement AM, Ericsson R, Olsson L. Cephalic muscle development in the Australian lungfish,Neoceratodus forsteri. J Morphol 2017; 279:494-516. [DOI: 10.1002/jmor.20784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059
| | - Alice M. Clement
- Department of Organismal Biology; Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A; Uppsala 752 36 Sweden
- School of Biological Sciences, College of Science and Engineering; Flinders University; Adelaide South Australia 5042 Australia
| | - Rolf Ericsson
- Laboratory for the Study of Craniofacial Evolution & Development, Vinicna 7; Charles University in Prague; Prague 128 44 Czech Republic
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung; Friedrich-Schiller-Universität Jena; Jena Germany
| |
Collapse
|
12
|
Ziermann JM, Freitas R, Diogo R. Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Front Zool 2017; 14:31. [PMID: 28649268 PMCID: PMC5480186 DOI: 10.1186/s12983-017-0216-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. RESULTS Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. CONCLUSION Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates.
Collapse
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington, DC 20059 USA
| | - Renata Freitas
- IBMC—Institute for Molecular and Cell Biology, Oporto, Portugal
- I3S, Institute for Innovation and Health Research, University of Oporto, Oporto, Portugal
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 USA
| |
Collapse
|
13
|
Diogo R, Ziermann JM. Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Dev Dyn 2015; 244:1046-1057. [PMID: 26095777 DOI: 10.1002/dvdy.24245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
Recent findings that urochordates are the closest sister-group of vertebrates have dramatically changed our understanding of chordate evolution and vertebrate origins. To continue to deepen our understanding of chordate evolution and diversity, in particular the morphological and taxonomical diversity of the vertebrate clade, one must explore the origin, development, and comparative anatomy of not only hard tissues, but also soft tissues such as muscles. Building on a recent overview of the discovery of a cardiopharyngeal field in urochordates and the profound implications for reconstructing the origin and early evolution of vertebrates, in this study we focus on the broader comparative and developmental anatomy of chordate cephalic muscles and their relation to life history, and to developmental, morphological and taxonomical diversity. We combine our recent findings on cephalochordates, urochordates, and vertebrates with a literature review and suggest that developmental changes related to metamorphosis and/or heterochrony (e.g., peramorphosis) played a crucial role in the early evolution of chordates and vertebrates. Recent studies reviewed here supported de Beer's "law of diversity" that peramorphic animals (e.g., ascidians, lampreys) are taxonomically and morphologically less diverse than nonperamorphic animals (e.g., gnathostomes), probably because their "too specialized" development and adult anatomy constrain further developmental and evolutionary innovations. Developmental Dynamics 244:1046-1057, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| |
Collapse
|
14
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
15
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|