1
|
Mi X, Wang C, Su M. Revision of the orb-weaving spider genus Yaginumia Archer, 1960 (Araneae, Araneidae) from China. Zookeys 2025; 1223:169-184. [PMID: 39817200 PMCID: PMC11729598 DOI: 10.3897/zookeys.1223.139465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
The orb-weaver spider genus Yaginumia Archer, 1960 from China is revised, and three species, including two new species, are recognized: Y.medog Mi & Wang, sp. nov. (♂♀) from Xizang and Y.qiong Mi & Wang, sp. nov. (♂♀) from Hainan; the type species, Y.sia (Strand, 1906) (♂♀), is redescribed based on specimens from Guizhou and Hubei. A distributional map of the studied specimens is also provided.
Collapse
Affiliation(s)
- Xiaoqi Mi
- College of Agriculture and Forestry Engineering and Planning, Guizhou Provincial Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, ChinaTongren UniversityTongrenChina
| | - Cheng Wang
- College of Agriculture and Forestry Engineering and Planning, Guizhou Provincial Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, Guizhou, ChinaTongren UniversityTongrenChina
| | - Ming Su
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha 410007, Hunan, ChinaCentral South Inventory and Planning Institute of National Forestry and Grassland AdministrationChangshaChina
| |
Collapse
|
2
|
Eskov KY, Marusik YM. A comparative morphology of trichobothrial bases in araneoid spiders and its significance for the phylogeny and system of the superfamily Araneoidea (Arachnida, Araneae). Zookeys 2024; 1219:1-60. [PMID: 39639957 PMCID: PMC11615620 DOI: 10.3897/zookeys.1219.133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Bothrial morphology was studied by SEM in 137 araneoid genera representing all 22 currently recognized extant families and all 42 conventional subfamilies of the Araneoidea. The ancestral type in the superfamily Araneoidea is a 'hooded' bothrium with a single well-developed transverse ridge, dividing its proximal and distal plates ('Erigone-type'); the advanced type is a solid dome-like bothrium without vestiges of the ridge ('Theridion-type'); there are several intermediate types reflecting various pathways and stages of the ridge reduction (united here as 'Argiope-type'). The parallel trends in bothrial evolution, recognized as continuous series from the ancestral type up to the advanced one through some intermediate stages, are distinguished in each of the seven main phylogenetic lineages of the superfamily: 'tetragnathoids', 'araneoids', 'cyatholipoids', and 'theridioids' possess a complete set of the three types, while 'malkariods', 'symphytognathoids'. and 'linyphioids' lack the advanced, dome-like type ('Theridion-type'). Only three taxa have been proposed earlier as the sister group of the superfamily Araneoidea: Nicodamoidea, Deinopoidea, and Leptonetoidea; morphology of bothria, as well as other cuticular microstructures, clearly supports the araneoid-nicodamoid relationship hypothesis, purely 'molecular' to date. Bothrial morphology provides the additional arguments for several taxonomic acts, e.g., for the reranking the Agnarsson's (2004) 'clade 35' (Theonoe, Carniella, Robertus, and Pholcomma) up to the Theonoeinae Simon, 1894, stat. nov., and for the revalidation the micropholcommatid Plectochetos Butler, 1932, gen. revalid. and zygiellid Parazygiella Wunderlich, 2004, gen. revalid.
Collapse
Affiliation(s)
- Kirill Y. Eskov
- Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya Str., 123, Moscow 117647, RussiaBorissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia
| | - Yuri M. Marusik
- Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences, Portovaya Str., 18, Magadan 68500, RussiaInstitute of Biological Problems of the North, Far Eastern Branch, Russian Academy of SciencesMagadanRussia
- Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South AfricaUniversity of the Free StateBloemfonteinSouth Africa
- Altai State University, 61 Lenina Pr., Barnaul, RF-656049, RussiaAltai State UniversityBarnaulRussia
| |
Collapse
|
3
|
Golobinek R, Gregorič M, Kralj-Fišer S. Body Size, Not Personality, Explains Both Male Mating Success and Sexual Cannibalism in a Widow Spider. BIOLOGY 2021; 10:189. [PMID: 33802370 PMCID: PMC7998861 DOI: 10.3390/biology10030189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Theory suggests that consistent individual variation in behavior relates to fitness, but few studies have empirically examined the role of personalities in mate choice, male-male competition and reproductive success. We observed the Mediterranean black widow, Latrodectus tredecimguttatus, in the individual and mating context, to test how body size measures and two functionally important aggressive behaviors, i.e., male aggression towards rivals and female voracity towards prey, affect mating behaviors, mating success and sexual cannibalism. We specifically selected voracity towards prey in females to test the "aggressive spillover hypothesis", suggesting that more voracious females are more sexually cannibalistic. Both females and males exhibit consistent individual differences in the examined aggressive behaviors. While larger males win contests more often and achieve more copulations, neither male nor female size measures correlate to aggression. Female voracity does not correlate with aggression towards mates and sexual cannibalism, rejecting the "spillover hypothesis". However, occurrence of sexual cannibalism positively relates to longer insertion duration. Furthermore, the smaller the ratio between male and female body length the more likely a female attacked and cannibalized a mate. We show that individual variation in aggression levels plays no direct role in the mating behavior of the Mediterranean black widow. Instead, body size affects male mating success and occurrences of sexual cannibalism in females.
Collapse
Affiliation(s)
| | | | - Simona Kralj-Fišer
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia; (R.G.); (M.G.)
| |
Collapse
|
4
|
Domènech M, Crespo LC, Enguídanos A, Arnedo MA. Mitochondrial discordance in closely related Theridion spiders (Araneae, Theridiidae), with description of a new species of the T. melanurum group. ZOOSYST EVOL 2020. [DOI: 10.3897/zse.96.49946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incorporation of molecular data into current taxonomic practise has unravelled instances of incongruence among different data sets. Here we report a case of mitochondrial discordance in cobweb spiders of the genus Theridion Walckenaer, 1805 from the Iberian Peninsula. Morphological examination of samples from a country-wide bioinventory initiative revealed the existence of a putative new species and two nominal species belonging to the Theridion melanurum species group. The morphological delineation was supported by the molecular analysis of a nuclear marker but was at odds with the groups circumscribed by a mitochondrial marker. The causes of this discordance remained uncertain, once sample and sequencing errors and the existence of pseudogenes were discarded. The full sorting observed in the alleles of the more slowly evolving nuclear marker ruled out incomplete lineage sorting, while the geographic patterns recovered were difficult to reconciliate with ongoing hybridization. We propose that the apparent incongruence observed is most likely the result of old introgression events in a group with high dispersal abilities. We further speculate that endosymbiont-driven cytoplasmatic incompatibility could be involved in the fixation of mitochondrial haplotypes across species barriers. Additionally, we describe the new species T. promiscuumsp. nov., based on the presence of diagnostic morphological traits, backed up by the nuclear data delimitation. Our study contributes yet another example of the perils of relying on single methods or data sources to summarise the variation generated by multiple processes acting through thousands of years of evolution and supports the key role of biological inventories in improving our knowledge of invertebrate biodiversity.
Collapse
|
5
|
Kallal RJ, Dimitrov D, Arnedo MA, Giribet G, Hormiga G. Monophyly, Taxon Sampling, and the Nature of Ranks in the Classification of Orb-Weaving Spiders (Araneae: Araneoidea). Syst Biol 2020; 69:401-411. [PMID: 31165170 DOI: 10.1093/sysbio/syz043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
We address some of the taxonomic and classification changes proposed by Kuntner et al. (2019) in a comparative study on the evolution of sexual size dimorphism in nephiline spiders. Their proposal to recircumscribe araneids and to rank the subfamily Nephilinae as a family is fundamentally flawed as it renders the family Araneidae paraphyletic. We discuss the importance of monophyly, outgroup selection, and taxon sampling, the subjectivity of ranks, and the implications of the age of origin criterion to assign categorical ranks in biological classifications. We explore the outcome of applying the approach of Kuntner et al. (2019) to the classification of spiders with emphasis on the ecribellate orb-weavers (Araneoidea) using a recently published dated phylogeny. We discuss the implications of including the putative sister group of Nephilinae (the sexually dimorphic genus Paraplectanoides) and the putative sister group of Araneidae (the miniature, monomorphic family Theridiosomatidae). We propose continuation of the phylogenetic classification put forth by Dimitrov et al. (2017), and we formally rank Nephilinae and Phonognathinae as subfamilies of Araneidae. Our classification better reflects the understanding of the phylogenetic placement and evolutionary history of nephilines and phonognathines while maintaining the diagnosability of Nephilinae. It also fulfills the fundamental requirement that taxa must be monophyletic, and thus avoids the paraphyly of Araneidae implied by Kuntner et al. (2019).
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Miquel A Arnedo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, & Biodiversity Research Institute (IRBio) Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| |
Collapse
|
6
|
Álvarez-Padilla F, Kallal RJ, Hormiga G. Taxonomy and Phylogenetics of Nanometinae and Other Australasian Orb-Weaving Spiders (Araneae: Tetragnathidae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2020. [DOI: 10.1206/0003-0090.438.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fernando Álvarez-Padilla
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México
| | - Robert J. Kallal
- Department of Biological Sciences, The George Washington University
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University
| |
Collapse
|
7
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
8
|
Kuntner M, Coddington JA. Sexual Size Dimorphism: Evolution and Perils of Extreme Phenotypes in Spiders. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:57-80. [PMID: 31573828 DOI: 10.1146/annurev-ento-011019-025032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sexual size dimorphism is one of the most striking animal traits, and among terrestrial animals, it is most extreme in certain spider lineages. The most extreme sexual size dimorphism (eSSD) is female biased. eSSD itself is probably an epiphenomenon of gendered evolutionary drivers whose strengths and directions are diverse. We demonstrate that eSSD spider clades are aberrant by sampling randomly across all spiders to establish overall averages for female (6.9 mm) and male (5.6 mm) size. At least 16 spider eSSD clades exist. We explore why the literature does not converge on an overall explanation for eSSD and propose an equilibrium model featuring clade- and context-specific drivers of gender size variation. eSSD affects other traits such as sexual cannibalism, genital damage, emasculation, and monogyny with terminal investment. Coevolution with these extreme sexual phenotypes is termed eSSD mating syndrome. Finally, as costs of female gigantism increase with size, eSSD may represent an evolutionary dead end.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia;
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
- Evolutionary Zoology Laboratory, Institute of Biology ZRC SAZU, SI-1001 Ljubljana, Slovenia
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
| |
Collapse
|
9
|
Kallal RJ, Hormiga G. Phylogenetic placement of the stone-nest orb-weaving spider Nemoscolus Simon, 1895 (Araneae : Araneidae) and the description of the first species from Australia. INVERTEBR SYST 2020. [DOI: 10.1071/is20035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The spider genus Nemoscolus Simon, 1895 (Araneidae) has been neglected taxonomically despite the unique retreat that several species construct in their horizontal orb-webs, composed of pebbles and other detritus. The distribution of Nemoscolus is poorly known and the genus includes species from Africa and Europe. Nemoscolus is placed in Simon’s Cycloseae species group along with Cyclosa Menge, 1866, Acusilas Simon, 1895, Arachnura Vinson, 1863, Witica O. Pickard-Cambridge, 1895, among others. Here we describe a new species from Queensland, Australia, N. sandersi, sp. nov., drastically expanding the distribution range of the genus. We use nucleotide sequence data to phylogenetically place Nemoscolus using model-based inference methods within Araneidae and to explore its affinities to Simon’s Cycloseae. The data support propinquity of Nemoscolus with Acusilas and Arachnura but not with Cyclosa. Our analyses suggest that Cycloseae is not a clade, with Cyclosa, Acusilas, Witica and Nemoscolus not sharing a recent common ancestor. This use of an integrated granular retreat represents at least the second independent evolution of such a structure within Araneidae. These results improve our understanding of both phylogeny and retreat evolution in araneid spiders.
Collapse
|
10
|
Cabra-García J, Hormiga G. Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
We present a total evidence phylogenetic analysis of the Neotropical orb-weaving spider genus Wagneriana and discuss the phylogenetic impacts of methodological choices. We analysed 167 phenotypic characters and nine loci scored for 115 Wagneriana and outgroups, including 46 newly sequenced species. We compared total evidence analyses and molecular-only analyses to evaluate the impact of phenotypic evidence, and we performed analyses using the programs POY, TNT, RAxML, GARLI, IQ-TREE and MrBayes to evaluate the effects of multiple sequence alignment and optimality criteria. In all analyses, Wagneriana carimagua and Wagneriana uropygialis were nested in the genera Parawixia and Alpaida, respectively, and the remaining species of Wagneriana fell into three main clades, none of which formed a pair of sister taxa. However, sister-group relationships among the main clades and their internal relationships were strongly influenced by methodological choices. Alignment methods had comparable topological effects to those of optimality criteria in terms of ‘subtree pruning and regrafting’ moves. The inclusion of phenotypic evidence, 2.80–3.05% of the total evidence matrices, increased support irrespective of the optimality criterion used. The monophyly of some groups was recovered only after the addition of morphological characters. A new araneid genus, Popperaneus gen. nov., is erected, and Paraverrucosa is resurrected. Four new synonymies and seven new combinations are proposed.
Collapse
Affiliation(s)
- Jimmy Cabra-García
- Departamento de Biología, Universidad del Valle, Cali, AA, Colombia
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, DC, USA
| |
Collapse
|
11
|
The Shape of Weaver: Investigating Shape Disparity in Orb-Weaving Spiders (Araneae, Araneidae) Using Geometric Morphometrics. Evol Biol 2019. [DOI: 10.1007/s11692-019-09482-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kuntner M, Hamilton CA, Cheng RC, Gregorič M, Lupše N, Lokovšek T, Lemmon EM, Lemmon AR, Agnarsson I, Coddington JA, Bond JE. Golden Orbweavers Ignore Biological Rules: Phylogenomic and Comparative Analyses Unravel a Complex Evolution of Sexual Size Dimorphism. Syst Biol 2019; 68:555-572. [PMID: 30517732 PMCID: PMC6568015 DOI: 10.1093/sysbio/syy082] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/14/2022] Open
Abstract
Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, 368 Youyi Road, Wuhan, Hubei 430062, China
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology, & Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow, ID 83844-2329, USA
| | - Ren-Chung Cheng
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Department of Life Sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Matjaž Gregorič
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Nik Lupše
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
- Division of Animal Evolutionary Biology, Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Tjaša Lokovšek
- Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, SI-1001 Ljubljana, Slovenia
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- Department of Biology, University of Vermont, 316 Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405-0086, USA
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, 1 Shields Drive, Davis, CA 95616, USA
| |
Collapse
|
13
|
Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW, Szűts T, Hayashi CY, Dimitrov D. Phylogeny of the orb‐weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 2019; 36:1-21. [DOI: 10.1111/cla.12382] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nikolaj Scharff
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Jonathan A. Coddington
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Todd A. Blackledge
- Integrated Bioscience Program Department of Biology University of Akron Akron OH USA
| | - Ingi Agnarsson
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
- Department of Biology University of Vermont 109 Carrigan Drive Burlington VT 05405‐0086 USA
| | - Volker W. Framenau
- Department of Terrestrial Zoology Western Australian Museum Locked Bag 49 Welshpool DC WA 6986 Australia
- School of Animal Biology University of Western Australia Crawley WA 6009 Australia
- Harry Butler Institute Murdoch University 90 South St. Murdoch WA 6150 Australia
| | - Tamás Szűts
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Department of Ecology University of Veterinary Medicine Budapest H1077 Budapest Hungary
| | - Cheryl Y. Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics American Museum of Natural History New York NY 10024 USA
| | - Dimitar Dimitrov
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- Natural History Museum University of Oslo PO Box 1172, Blindern NO‐0318 Oslo Norway
- Department of Natural History University Museum of Bergen University of Bergen Bergen Norway
| |
Collapse
|
14
|
Morano E, Bonal R. Araneusbonali sp. n., a novel lichen-patterned species found on oak trunks (Araneae, Araneidae). Zookeys 2018:119-145. [PMID: 30123025 PMCID: PMC6092472 DOI: 10.3897/zookeys.779.26944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 11/12/2022] Open
Abstract
The new species Araneusbonali Morano, sp. n. (Araneae, Araneidae) collected in central and western Spain is described and illustrated. Its novel status is confirmed after a thorough revision of the literature and museum material from the Mediterranean Basin. The taxonomy of Araneus is complicated, but both morphological and molecular data supported the genus membership of Araneusbonali Morano, sp. n. Additionally, the species uniqueness was confirmed by sequencing the barcode gene cytochrome oxidase I from the new species and comparing it with the barcodes available for species of Araneus. A molecular phylogeny, based on nuclear and mitochondrial genes, retrieved a clade with a moderate support that grouped Araneusdiadematus Clerck, 1757 with another eleven species, but neither included Araneusbonali sp. n. nor Araneusangulatus Clerck, 1757, although definitive conclusions about the relationships among Araneus species need more markers examined and a broader taxonomic coverage. The new species was collected on isolated holm oaks and forest patches within agricultural landscapes. Adults were mostly trapped on tree trunks, where their lichen-like colours favour mimicry, while juveniles were collected on tree branches. Specimens were never found either in ground traps or grass samples. This species overwinters as egg, juveniles appear in early spring, but reproduction does not take place until late summer-early autumn. Araneusbonali Morano, sp. n. was found in the same locality from where another new spider species was described. Nature management policies should thus preserve isolated trees as key refuges for forest arthropods in agricultural landscapes, as they may be hosting more unnoticed new species. After including Araneusbonali Morano, sp. n. and removing doubtful records and synonymies, the list of Araneus species in the Iberian Peninsula numbers eight.
Collapse
Affiliation(s)
- Eduardo Morano
- DITEG Research Group, University of Castilla-La Mancha, Toledo, Spain University of Castilla-La Mancha Toledo Spain
| | - Raul Bonal
- Forest Research Group, INDEHESA, University of Extremadura, Plasencia, Spain University of Extremadura Plasencia Spain.,CREAF, Cerdanyola del Vallès, 08193 Catalonia, Spain Ecological and Forestry Applications Research Centre Catalonia Spain
| |
Collapse
|
15
|
Kallal RJ, Hormiga G. Systematics, phylogeny and biogeography of the Australasian leaf-curling orb-weaving spiders (Araneae: Araneidae: Zygiellinae), with a comparative analysis of retreat evolution. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Robert J Kallal
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, D.C., USA
| |
Collapse
|
16
|
Mortimer B, Soler A, Siviour CR, Vollrath F. Remote monitoring of vibrational information in spider webs. Naturwissenschaften 2018; 105:37. [PMID: 29789945 PMCID: PMC5978847 DOI: 10.1007/s00114-018-1561-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
Abstract
Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal’s body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.
Collapse
Affiliation(s)
- B Mortimer
- Department of Zoology, University of Oxford, Oxford, UK. .,School of Biological Sciences, University of Bristol, Bristol, UK.
| | - A Soler
- Department Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Madrid, Spain
| | - C R Siviour
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - F Vollrath
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Kallal RJ, Fernández R, Giribet G, Hormiga G. A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. Mol Phylogenet Evol 2018; 126:129-140. [PMID: 29635025 DOI: 10.1016/j.ympev.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/05/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
The orb-weaving spider family Araneidae is extremely diverse (>3100 spp.) and its members can be charismatic terrestrial arthropods, many of them recognizable by their iconic orbicular snare web, such as the common garden spiders. Despite considerable effort to better understand their backbone relationships based on multiple sources of data (morphological, behavioral and molecular), pervasive low support remains in recent studies. In addition, no overarching phylogeny of araneids is available to date, hampering further comparative work. In this study, we analyze the transcriptomes of 33 taxa, including 19 araneids - 12 of them new to this study - representing most of the core family lineages, to examine the relationships within the family using genomic-scale datasets resulting from various methodological treatments, namely ortholog selection and gene occupancy as a measure of matrix completion. Six matrices were constructed to assess these effects by varying orthology inference method and gene occupancy threshold. Orthology methods used are the benchmarking tool BUSCO and the tree-based method UPhO; three gene occupancy thresholds (45%, 65%, 85%) were used to assess the effect of missing data. Gene tree and species tree-based methods (including multi-species coalescent and concatenation approaches, as well as maximum likelihood and Bayesian inference) were used totalling 17 analytical treatments. The monophyly of Araneidae and the placement of core araneid lineages were supported, together with some previously unsound backbone divergences; these include high support for Zygiellinae as the earliest diverging subfamily (followed by Nephilinae), the placement of Gasteracanthinae as sister group to Cyclosa and close relatives, and close relationships between the Araneus + Neoscona clade and Cyrtophorinae + Argiopinae clade. Incongruences were relegated to short branches in the clade comprising Cyclosa and its close relatives. We found congruence between most of the completed analyses, with minimal topological effects from occupancy/missing data and orthology assessment. The resulting number of genes by certain combinations of orthology and occupancy thresholds being analyzed had the greatest effect on the resulting trees, with anomalous outcomes recovered from analysis of lower numbers of genes.
Collapse
Affiliation(s)
- Robert J Kallal
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA.
| | - Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA; Bioinformatics and Genomics Unit, Center for Genomic Regulation, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, 2029 G St. NW, Washington, DC 20052, USA
| |
Collapse
|
18
|
Walter A. Tracing the evolutionary origin of a visual signal: the coincidence of wrap attack and web decorating behaviours in orb web spiders (Araneidae). Evol Ecol 2018. [DOI: 10.1007/s10682-018-9930-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Kallal RJ, Hormiga G. An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines. INVERTEBR SYST 2018. [DOI: 10.1071/is17058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite numerous phylogenetic analyses of the orb-weaving spider family Tetragnathidae, several relationships from the subfamily to species level are tenuous or unclear. One such example regards the validity and composition of the tetragnathid subfamily Metainae, which historically has mixed support and limited taxon sampling. Sequences for six genetic markers – 12S, 16S, 18S, 28S, cytochrome c oxidase I and histone H3 – were analysed for 78 taxa, including 10 that were completely new or with increased markers. Analysed in both maximum likelihood and Bayesian frameworks, we find good support for Metainae for the first time. The subfamily includes three previously described genera – Meta, Metellina and Dolichognatha – in addition to one described herein, Zhinu Kallal & Hormiga, gen. nov., from Taiwan. Also within Metainae, we synonymise Metellina with the monotypic Menosira and reaffirm the synonymy of Dolichognatha with Prolochus. Finally, we describe a new species of leucaugine tetragnathid from the Philippines, Orsinome megaloverpa, sp. nov., the second member of Orsinome to be placed in a phylogenetic context.
Collapse
|
20
|
Turk E, Kuntner M, Kralj-Fišer S. Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders. Naturwissenschaften 2017; 105:1. [DOI: 10.1007/s00114-017-1529-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
|
21
|
Cao X, Liu J, Chen J, Zheng G, Kuntner M, Agnarsson I. Rapid dissemination of taxonomic discoveries based on DNA barcoding and morphology. Sci Rep 2016; 6:37066. [PMID: 27991489 PMCID: PMC5171852 DOI: 10.1038/srep37066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023] Open
Abstract
The taxonomic impediment is characterized by dwindling classical taxonomic expertise, and slow pace of revisionary work, thus more rapid taxonomic assessments are needed. Here we pair rapid DNA barcoding methods with swift assessment of morphology in an effort to gauge diversity, establish species limits, and rapidly disseminate taxonomic information prior to completion of formal taxonomic revisions. We focus on a poorly studied, but diverse spider genus, Pseudopoda, from East Asia. We augmented the standard barcoding locus (COI) with nuclear DNA sequence data (ITS2) and analyzed congruence among datasets and species delimitation methods for a total of 572 individuals representing 23 described species and many potentially new species. Our results suggest that a combination of CO1 + ITS2 fragments identify and diagnose species better than the mitochondrial barcodes alone, and that certain tree based methods yield considerably higher diversity estimates than the distance-based approaches and morphology. Combined, through an extensive field survey, we detect a twofold increase in species diversity in the surveyed area, at 42–45, with most species representing short range endemics. Our study demonstrates the power of biodiversity assessments and swift dissemination of taxonomic data through rapid inventory, and through a combination of morphological and multi-locus DNA barcoding diagnoses of diverse arthropod lineages.
Collapse
Affiliation(s)
- Xiaowei Cao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jie Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jian Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Guo Zheng
- College of Life Sciences, Shenyang Normal University, Shenyang 110034, Liaoning, China
| | - Matjaž Kuntner
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.,Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Novi Trg 2, 1000 Ljubljana, Slovenia.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
22
|
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, Almeida‐Silva L, Alvarez‐Padilla F, Arnedo MA, Benavides Silva LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin M, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnick NI, Polotow D, Silva‐Dávila D, Scharff N, Szűts T, Ubick D, Vink CJ, Wood HM, Zhang J. The spider tree of life: phylogeny of Araneae based on target‐gene analyses from an extensive taxon sampling. Cladistics 2016; 33:574-616. [DOI: 10.1111/cla.12182] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ward C. Wheeler
- Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th St. New York NY 10024 USA
| | - Jonathan A. Coddington
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
| | - Louise M. Crowley
- Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th St. New York NY 10024 USA
| | - Dimitar Dimitrov
- Natural History Museum University of Oslo Oslo Norway
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
| | - Pablo A. Goloboff
- Unidad Ejecutora Lillo FML—CONICET Miguel Lillo 251 4000 SM. de Tucumán Argentina
| | - Charles E. Griswold
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
| | - Gustavo Hormiga
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
| | - Lorenzo Prendini
- Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th St. New York NY 10024 USA
| | - Martín J. Ramírez
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET Av. Angel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Petra Sierwald
- The Field Museum of Natural History 1400 S Lake Shore Drive Chicago IL 60605 USA
| | - Lina Almeida‐Silva
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Laboratório Especial de Coleções Zoológicas Instituto Butantan Av. Vital Brasil, 1500 05503‐900 São Paulo São Paulo Brazil
| | - Fernando Alvarez‐Padilla
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Departamento de Biología Comparada Facultad de Ciencias Laboratório de Acarología Universidad Nacional Autónoma de México Distrito Federal Del. Coyoacán CP 04510 México
| | - Miquel A. Arnedo
- Departamento de Biología Animal Facultat de Biología Institut de Recerca de la Bioversitat Universitat de Barcelona Av. Diagonal 643 08028 Barcelona Spain
| | - Ligia R. Benavides Silva
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
| | - Suresh P. Benjamin
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
- National Institute of Fundamental Studies Hantana Road Kandy 20000 Sri Lanka
| | - Jason E. Bond
- Department of Biological Sciences Auburn University Museum of Natural History Auburn University Rouse Life Sciences Building Auburn AL 36849 USA
| | - Cristian J. Grismado
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET Av. Angel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Emile Hasan
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
| | - Marshal Hedin
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
| | - Matías A. Izquierdo
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET Av. Angel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Facundo M. Labarque
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET Av. Angel Gallardo 470 C1405DJR Buenos Aires Argentina
- Laboratório Especial de Coleções Zoológicas Instituto Butantan Av. Vital Brasil, 1500 05503‐900 São Paulo São Paulo Brazil
| | - Joel Ledford
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Department of Plant Biology University of California Davis CA 95616 USA
| | - Lara Lopardo
- Department of Biological Sciences The George Washington University 2029 G St. NW Washington DC 20052 USA
| | - Wayne P. Maddison
- Department of Zoology University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
| | - Jeremy A. Miller
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Department of Terrestrial Zoology Netherlands Centre for Biodiversity Naturalis Postbus 9517 2300 RA Leiden The Netherlands
| | - Luis N. Piacentini
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’—CONICET Av. Angel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Norman I. Platnick
- Division of Invertebrate Zoology American Museum of Natural History Central Park West at 79th St. New York NY 10024 USA
| | - Daniele Polotow
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Laboratório Especial de Coleções Zoológicas Instituto Butantan Av. Vital Brasil, 1500 05503‐900 São Paulo São Paulo Brazil
| | - Diana Silva‐Dávila
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Departamento de Entomología Museo de Historia Natural Universidad Nacional Mayor de San Marcos Av. Arenales 1256 Apartado Postal 140434 Lima 14 Peru
| | - Nikolaj Scharff
- Biodiversity Section Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Universitetsparken 15 Copenhagen Denmark
| | - Tamás Szűts
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
- Department of Zoology University of West Hungary H9700 Szombathely Hungary
| | - Darrell Ubick
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
| | - Cor J. Vink
- Department of Biology San Diego State University 5500 Campanile Drive San Diego CA 92182 USA
- Canterbury Museum Rolleston Avenue Christchurch 8013 New Zealand
| | - Hannah M. Wood
- Smithsonian Institution National Museum of Natural History 10th and Constitution NW Washington DC 20560‐0105 USA
- Department of Entomology California Academy of Sciences 55 Music Concourse Drive, Golden State Park San Francisco CA 94118 USA
| | - Junxia Zhang
- Department of Zoology University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
23
|
Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Griswold CE, Scharff N, Hormiga G. Rounding up the usual suspects: a standard target‐gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb‐weaving spiders with a new family‐rank classification (Araneae, Araneoidea). Cladistics 2016; 33:221-250. [DOI: 10.1111/cla.12165] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Dimitar Dimitrov
- Natural History Museum University of Oslo P.O. Box 1172 Blindern NO‐0318 Oslo Norway
| | - Ligia R. Benavides
- Department of Biological Sciences The George Washington University Washington DC 20052 USA
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge MA 02138 USA
| | - Miquel A. Arnedo
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge MA 02138 USA
- Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Avinguda Diagonal 643 Barcelona 08071 Catalonia Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge MA 02138 USA
| | - Charles E. Griswold
- Arachnology California Academy of Sciences 55 Music Concourse Drive, Golden Gate Park San Francisco CA 94118 USA
| | - Nikolaj Scharff
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Universitetsparken 15 Copenhagen DK‐2100 Denmark
| | - Gustavo Hormiga
- Department of Biological Sciences The George Washington University Washington DC 20052 USA
| |
Collapse
|
24
|
Gregorič M, Šuen K, Cheng RC, Kralj-Fišer S, Kuntner M. Spider behaviors include oral sexual encounters. Sci Rep 2016; 6:25128. [PMID: 27126507 PMCID: PMC4850386 DOI: 10.1038/srep25128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
Several clades of spiders whose females evolved giant sizes are known for extreme sexual behaviors such as sexual cannibalism, opportunistic mating, mate-binding, genital mutilation, plugging, and emasculation. However, these behaviors have only been tested in a handful of size dimorphic spiders. Here, we bring another lineage into the picture by reporting on sexual behavior of Darwin's bark spider, Caerostris darwini. This sexually size dimorphic Madagascan species is known for extreme web gigantism and for producing the world's toughest biomaterial. Our field and laboratory study uncovers a rich sexual repertoire that predictably involves cannibalism, genital mutilation, male preference for teneral females, and emasculation. Surprisingly, C. darwini males engage in oral sexual encounters, rarely reported outside mammals. Irrespective of female's age or mating status males salivate onto female genitalia pre-, during, and post-copulation. While its adaptive significance is elusive, oral sexual contact in spiders may signal male quality or reduce sperm competition.
Collapse
Affiliation(s)
- Matjaž Gregorič
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia
| | - Klavdija Šuen
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia
| | - Ren-Chung Cheng
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia
| | - Simona Kralj-Fišer
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia
| | - Matjaž Kuntner
- Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
25
|
Agnarsson I, Jencik BB, Veve GM, Hanitriniaina S, Agostini D, Goh SP, Pruitt J, Kuntner M. Systematics of the Madagascar Anelosimus spiders: remarkable local richness and endemism, and dual colonization from the Americas. Zookeys 2015; 509:13-52. [PMID: 26175602 PMCID: PMC4493342 DOI: 10.3897/zookeys.509.8897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 06/05/2015] [Indexed: 11/23/2022] Open
Abstract
Despite the alarming rates of deforestation and forest fragmentation, Madagascar still harbors extraordinary biodiversity. However, in many arthropod groups, such as spiders, this biodiversity remains mostly unexplored and undescribed. The first subsocial Madagascan species of the theridiid spider genus Anelosimus were described in 2005 when six new species were found to coexist in the Périnet forest fragment within Andasibe-Mantadia NP. However, this discovery was based only on a few specimens and the extent of this Madagascan radiation has remained unknown. We here report on a thorough survey of >350 colonies from Périnet, and three pilot surveys into additional Madagascar forests (Ambohitantely, Ranamofana, and Montagne d'Ambre). The morphological, molecular and natural history data from these surveys facilitated a revised taxonomy and phylogenetic hypothesis of Madagascan Anelosimus. This subsocial clade currently comprises six previously known (Anelosimusandasibe Agnarsson & Kuntner, 2005, Anelosimusmay Agnarsson, 2005, Anelosimusnazariani Agnarsson & Kuntner, 2005, Anelosimussallee Agnarsson & Kuntner, 2005, Anelosimussalut Agnarsson & Kuntner, 2005, Anelosimusvondrona Agnarsson & Kuntner, 2005) and 10 new species: Anelosimusata sp. n., Anelosimusbuffoni sp. n., Anelosimusdarwini sp. n., Anelosimushookeri sp. n., Anelosimushuxleyi sp. n., Anelosimuslamarcki sp. n., Anelosimusmoramora sp. n., Anelosimustita sp. n., Anelosimustorfi sp. n., Anelosimuswallacei sp. n.. With the exception of Anelosimusmay and Anelosimusvondrona, all other species appear to be single forest endemics. While additional sampling is necessary, these data imply a much higher local richness and endemism in Madagascan forests than in any other comparable area globally. The phylogenetic results establish a sister clade relationship between the subsocial Anelosimus in Madagascar and the American 'eximius group', and between the solitary Anelosimusdecaryi on Madagascar and a solitary American clade. These findings imply duplicate colonizations from America, an otherwise rare biogeographical pattern, calling for more detailed investigation of Anelosimus biogeography.
Collapse
Affiliation(s)
- Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Brian B. Jencik
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Giselle M. Veve
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Diego Agostini
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Seok Ping Goh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jonathan Pruitt
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Matjaž Kuntner
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Centre for Behavioural Ecology and Evolution (CBEE), College of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|