1
|
Chukaew T, Isomura N, Mezaki T, Matsumoto H, Kitano YF, Nozawa Y, Tachikawa H, Fukami H. Molecular Phylogeny and Taxonomy of the Coral Genus Cyphastrea (Cnidaria, Scleractinia, Merulinidae) in Japan, With the First Records of Two Species. Zoolog Sci 2023; 40:326-340. [PMID: 37522604 DOI: 10.2108/zs230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023]
Abstract
The scleractinian coral genus Cyphastrea is widely distributed in the Indo-Pacific region and is common from the subtropical to the warm-temperate regions in Japan. Three new species in this genus have recently been reported from south-eastern Australia or the Red Sea. However, taxonomic and species diversity have been little studied so far in Japan. In this study, we analyzed 112 specimens of Cyphastrea collected from the subtropical to the warm-temperate regions in Japan to clarify the species diversity in the country. This analysis was based on skeletal morphological and molecular analyses using three genetic markers of the nuclear 28S rDNA, histone H3 gene, and the mitochondrial noncoding intergenic region between COI and tRNAmet. The molecular phylogenetic trees showed that our specimens are separated mainly into four clades. Considering the morphological data with the molecular phylogenetic relationships, we confirmed a total of nine species, including two species, C. magna and C. salae, recorded for the first time in Japan. Although eight out of nine species were genetically included within Cyphastrea, one species, C. agassizi, was genetically distant from all other species and was closely related to the genus Leptastrea, suggesting the return of this species to the genus to which it was originally ascribed. Two newly recorded species were reciprocally monophyletic, while the other six species (excluding C. agassizi) clustered in two clades without forming species-specific lineages, including three polyphyletic species. Thus, the species boundary between species in Cyphastrea remains unclear in most species using these three sequenced loci.
Collapse
Affiliation(s)
- Thanapat Chukaew
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2155, Japan
| | - Naoko Isomura
- Bioresources Engineering, Institute of Technology, Okinawa College, Nago-city, Okinawa 905-2192, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Kochi 788-0333, Japan
| | | | - Yuko F Kitano
- Japan Wildlife Research Center, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hiroyuki Tachikawa
- Coastal Branch of Natural History Museum and Institute, Katsuura, Chiba 299-5242, Japan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2155, Japan,
| |
Collapse
|
2
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
3
|
The Complete Mitochondrial Genome of Homophyllia bowerbanki (Scleractinia, Lobophylliidae): The First Sequence for the Genus Homophyllia. Genes (Basel) 2023; 14:genes14030695. [PMID: 36980967 PMCID: PMC10048006 DOI: 10.3390/genes14030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Reef-building coral species of the order Scleractinia play an important role in shallow tropical seas by providing an environmental base for the ecosystem. The molecular data of complete mitochondrial genome have become an important source for evaluating phylogenetic and evolutionary studies of Scleractinia. Here, the complete mitogenome of Homophyllia bowerbanki (Milne Edwards and Haime, 1857), collected from Nansha Islands of the South China Sea, was sequenced for the first time through a next-generation sequencing method. H. bowerbanki is the first species of its genus for which the mitogenome was sequenced. This mitogenome was 18,154 bp in size and included two transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs), and two ribosomal RNA genes (rRNAs). It showed a similar gene structure and gene order to the other typical scleractinians. All 17 genes were encoded on the H strand and the total GC content was 33.86% in mitogenome. Phylogenetic analysis (maximum likelihood tree method) showed that H. bowerbanki belonged to the “Robust” clade and clustered together with other two species in the family Lobophylliidae based on 13 PCGs. The mitogenome can provide significant molecular information to clarify the evolutionary and phylogenetic relationships between stony corals and to facilitate their taxonomic classification; it can also support coral species monitoring and conservation efforts.
Collapse
|
4
|
Basso D, Piazza G, Bracchi VA. Calcification traits for cryptic species identification: Insights into coralline biomineralization. PLoS One 2022; 17:e0273505. [PMID: 36190996 PMCID: PMC9529143 DOI: 10.1371/journal.pone.0273505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
Calcareous red algae are foundation species and ecosystem engineers with a global distribution. The principles governing their calcification pathways are still debated and the morphological characters are frequently unreliable for species segregation, as shown by molecular genetics. The recent description of the new species Lithophyllum pseudoracemus, previously undetected and morphologically confused with Lithophyllum racemus, offered a challenging opportunity to test the effectiveness of microanatomy and ultrastructural calcification traits as tools for the identification of these two species, for integrative taxonomy. High resolution SEM images of molecularly identified samples showed that the different size of the perithallial cells and the features of the asexual conceptacle chambers may contribute to the separation of the two species. The two species share the same crystallite morphology in the primary and secondary cell-wall calcification, as previously described in other species belonging to the same clade. However, the perithallial secondary calcification was significantly thicker in L. racemus than in L. pseudoracemus. We described a granular calcified layer in the innermost part of the cell wall, as a putative precursor phase in the biomineralization and formation of the secondary calcification. The hypothesis of different pathways for the formation of the primary and secondary calcification is supported by the observed cell elongation associated with thicker and higher Mg/Ca primary calcification, the inverse correlation of primary and secondary calcification thickness, and the absence of primary calcification in the newly formed wall cutting off an epithallial cell from the meristem.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- CoNISMa Research Unit of Milano-Bicocca, Milano, Italy
- * E-mail:
| | - Giulia Piazza
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- Department of Earth and Ocean Dynamics, University of Barcelona, Barcelona, Spain
| | - Valentina Alice Bracchi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
- CoNISMa Research Unit of Milano-Bicocca, Milano, Italy
| |
Collapse
|
5
|
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 2022; 175:107565. [PMID: 35787457 DOI: 10.1016/j.ympev.2022.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.
Collapse
Affiliation(s)
- I G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - C F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - M V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil.
| |
Collapse
|
6
|
Grinblat M, Cooke I, Shlesinger T, Ben-Zvi O, Loya Y, Miller DJ, Cowman PF. Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals). Mol Phylogenet Evol 2021; 164:107265. [PMID: 34274488 DOI: 10.1016/j.ympev.2021.107265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.
Collapse
Affiliation(s)
- Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Or Ben-Zvi
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel; The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, Australia.
| |
Collapse
|
7
|
Zhao M, Zhang H, Zhong Y, Xu X, Yan H, Li G, Yan W. Microstructural characteristics of the stony coral genus Acropora useful to coral reef paleoecology and modern conservation. Ecol Evol 2021; 11:3093-3109. [PMID: 33841770 PMCID: PMC8019043 DOI: 10.1002/ece3.7247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/26/2020] [Accepted: 01/13/2021] [Indexed: 11/08/2022] Open
Abstract
Identification of fossil corals is often limited due to poor preservation of external skeleton morphology, especially in the genus Acropora which is widespread across the Indo-Pacific. Based on skeleton characteristics from thin section, we here develop a link between the internal skeleton structure and external morphology. Ten characteristics were summarized to distinguish Acropora and five related genera, including the type and differentiation of corallites, the skeleton nature of corallites (septa, columellae, dissepiments, wall), and calcification centers within septa. Acropora is distinctive for its dimorphic corallites: axial and radial. Isopora is similar to Acropora but possess more than a single axial corallites. Montipora and Astreopora (family Acroporidae) have monomorphic corallites and a synapticular ring wall, with clustered calcification center in the former and medial lines in the latter. Pocillopora and Porties are classified by distinctive dissepiments, columellae and septa. These microstructural skeleton characteristics were effective in the genus identification of fossil corals from drilled cores in the South China Sea. Eighteen detailed characteristics (ten of axial corallites, four of radial corallites, and four of coenosteum) were used in the Acropora species classification. The axial corallites size and structure (including corallite diameter, synapticular rings, and septa), the septa of radial corallites, and the arrangement of coenosteum were critical indicators for species identification. This identification guide can help paleoenvironmental and paleoecological analyses and modern coral reef conservation and restoration.
Collapse
Affiliation(s)
- Meixia Zhao
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Haiyang Zhang
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Daya Bay Marine Biology Research StationChinese Academy of ScienceShenzhenChina
| | - Xiaofeng Xu
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongqiang Yan
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Gang Li
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Wen Yan
- Key Laboratory of Ocean and Marginal Sea GeologySouth China Sea Institute of OceanologyInnovation Academy of South China Sea Ecology and Environmental EngineeringChinese Academy of SciencesGuangzhouChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Arrigoni R, Huang D, Berumen ML, Budd AF, Montano S, Richards ZT, Terraneo TI, Benzoni F. Integrative systematics of the scleractinian coral genera
Caulastraea
,
Erythrastrea
and
Oulophyllia. ZOOL SCR 2021. [DOI: 10.1111/zsc.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica Anton Dohrn Napoli Italy
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore Singapore Singapore
| | - Michael L. Berumen
- Reef Ecology Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Ann F. Budd
- Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano − Bicocca Milano Italy
- Marine Research and High Education Center Magoodhoo Island Faafu Atoll Maldives
| | - Zoe T. Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Tullia I. Terraneo
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Francesca Benzoni
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
9
|
Mitsuki Y, Isomura N, Nozawa Y, Tachikawa H, Huang D, Fukami H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). INVERTEBR SYST 2021. [DOI: 10.1071/is21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.
Collapse
|
10
|
Ng CSL, Huang D, Toh KB, Sam SQ, Kikuzawa YP, Toh TC, Taira D, Chan YKS, Hung LZT, Sim WT, Rashid AR, Afiq-Rosli L, Ng NK, Chou LM. Responses of urban reef corals during the 2016 mass bleaching event. MARINE POLLUTION BULLETIN 2020; 154:111111. [PMID: 32319927 DOI: 10.1016/j.marpolbul.2020.111111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 05/28/2023]
Abstract
Predicting the bleaching responses of corals is crucial in light of frequent heat stress events to manage further losses of biodiversity and ecosystem functioning, especially for reefs impacted by urbanisation. We examined if the coral cover and community at various Singapore sites changed during the 2016 global coral bleaching event. Bleaching prevalence varied widely among sites in June 2016, and was best explained by site and coral species. While some sites were minimally impacted, others registered significant decreases in coral cover and community changes persisting till March 2017, when normal colouration was mostly regained by corals. Bleaching susceptibility was associated with larger corallites in hermaphrodites and smaller corallites in gonochores (probably due to the cost of maintaining dual sexual functions in hermaphrodites), and with increasing proximity between polyps (likely because thermal damage would be less contained among polyps with greater physiological integration). However, bleaching resilience-the capacity to regain baseline pigmentation-was poorly explained by the traits studied. Our findings suggest that the interplay between local conditions and species composition strongly affects bleaching outcomes on urbanised reefs, and underscore the utility of coral traits for predicting bleaching responses to help in formulating appropriate management strategies.
Collapse
Affiliation(s)
- Chin Soon Lionel Ng
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore.
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Kok Ben Toh
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore; School of Natural Resources and Environment, University of Florida, 103 Black Hall, Gainsville, FL 32611, United States of America
| | - Shu Qin Sam
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Yuichi Preslie Kikuzawa
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Tai Chong Toh
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore; College of Alice and Peter Tan, National University of Singapore, 8 College Avenue East, 138615, Singapore
| | - Daisuke Taira
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Yong Kit Samuel Chan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558
| | - Ling Zi Tracy Hung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558
| | - Wan Ting Sim
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Ahmad Rafiuddin Rashid
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Ngan Kee Ng
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| |
Collapse
|
11
|
Quek RZB, Jain SS, Neo ML, Rouse GW, Huang D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 2020; 20:807-818. [PMID: 32077619 PMCID: PMC7468246 DOI: 10.1111/1755-0998.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Despite the ecological and economic significance of stony corals (Scleractinia), a robust understanding of their phylogeny remains elusive due to patchy taxonomic and genetic sampling, as well as the limited availability of informative markers. To increase the number of genetic loci available for phylogenomic analyses in Scleractinia, we designed 15,919 DNA enrichment baits targeting 605 orthogroups (mean 565 ± SD 366 bp) over 1,139 exon regions. A further 236 and 62 barcoding baits were designed for COI and histone H3 genes respectively for quality and contamination checks. Hybrid capture using these baits was performed on 18 coral species spanning the presently understood scleractinian phylogeny, with two corallimorpharians as outgroup. On average, 74% of all loci targeted were successfully captured for each species. Barcoding baits were matched unambiguously to their respective samples and revealed low levels of cross-contamination in accordance with expectation. We put the data through a series of stringent filtering steps to ensure only scleractinian and phylogenetically informative loci were retained, and the final probe set comprised 13,479 baits, targeting 452 loci (mean 531 ± SD 307 bp) across 865 exon regions. Maximum likelihood, Bayesian and species tree analyses recovered maximally supported, topologically congruent trees consistent with previous phylogenomic reconstructions. The phylogenomic method presented here allows for consistent capture of orthologous loci among divergent coral taxa, facilitating the pooling of data from different studies and increasing the phylogenetic sampling of scleractinians in the future.
Collapse
Affiliation(s)
- Randolph Z. B. Quek
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Sudhanshi S. Jain
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mei Lin Neo
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Greg W. Rouse
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCAUSA
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Auer G, Piller WE. Nanocrystals as phenotypic expression of genotypes-An example in coralline red algae. SCIENCE ADVANCES 2020; 6:eaay2126. [PMID: 32095524 PMCID: PMC7015681 DOI: 10.1126/sciadv.aay2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Coralline red algae (CRA) are important ecosystem engineers in the world's oceans. They play key roles as primary food source and carbonate producers in marine habitats. CRA are also vital for modern reef systems where they act as substrate for coral growth and stabilizers of reef frameworks. However, morphotaxonomic identification of these important marine organisms is hampered by the fact that morphological concepts used for their classification do not correspond to molecular data. We present the first analysis of nanoscale features in calcified cell walls of CRA in a globally distributed sample set. We use new morphological traits based on these cell wall ultrastructures to construct an independent morphological phyletic tree that shows a promising congruency with existing CRA molecular phylogenies. Our results highlight cellular ultrastructures as a tool to define the phenotypic expression of genotypic information showing their potential to unify morphology with molecular phylogeny.
Collapse
Affiliation(s)
- Gerald Auer
- Research Institute for Marine Resources Utilization (Biogeochemistry Program), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- University of Graz, Institute of Earth Sciences (Geology and Paleontology), NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
| | - Werner E. Piller
- University of Graz, Institute of Earth Sciences (Geology and Paleontology), NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
| |
Collapse
|
13
|
Montgomery AD, Fenner D, Toonen RJ. Annotated checklist for stony corals of American Sāmoa with reference to mesophotic depth records. Zookeys 2019; 849:1-170. [PMID: 31171897 PMCID: PMC6538593 DOI: 10.3897/zookeys.849.34763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 11/12/2022] Open
Abstract
An annotated checklist of the stony corals (Scleractinia, Milleporidae, Stylasteridae, and Helioporidae) of American Sāmoa is presented. A total of 377 valid species has been reported from American Sāmoa with 342 species considered either present (251) or possibly present (91). Of these 342 species, 66 have a recorded geographical range extension and 90 have been reported from mesophotic depths (30-150 m). Additionally, four new species records (Acanthastreasubechinata Veron, 2000, Favitesparaflexuosus Veron, 2000, Echinophylliaechinoporoides Veron & Pichon, 1980, Turbinariairregularis Bernard, 1896) are presented. Coral species of concern include species listed under the US Endangered Species Act (ESA) and the International Union for Conservation of Nature's (IUCN) Red List of threatened species. Approximately 17.5% of the species present or possibly present are categorized as threatened by IUCN compared to 27% of the species globally. American Sāmoa has seven ESA-listed or ESA candidate species, including Acroporaglobiceps (Dana, 1846), Acroporajacquelineae Wallace, 1994, Acroporaretusa (Dana, 1846), Acroporaspeciosa (Quelch, 1886), Fimbriaphylliaparadivisa (Veron, 1990), Isoporacrateriformis (Gardiner, 1898), and Pocilloporameandrina Dana, 1846. There are two additional species possibly present, i.e., Pavonadiffluens (Lamarck, 1816) and Poritesnapopora Veron, 2000.
Collapse
Affiliation(s)
- Anthony D. Montgomery
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI 96744, USAUniversity of Hawaiʻi at MānoaKāneʻoheUnited States of America
- U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd. Honolulu, HI 96850, USAU.S. Fish and Wildlife ServiceHonoluluUnited States of America
| | - Douglas Fenner
- Ocean Associates, Inc., NOAA Fisheries Service, Pacific Islands Regional Office, Pago Pago, AS, USANOAA Fisheries Service, Pacific Islands Regional OfficePago PagoAmerican Samoa
| | - Robert J. Toonen
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI 96744, USAUniversity of Hawaiʻi at MānoaKāneʻoheUnited States of America
| |
Collapse
|
14
|
|
15
|
Niu W, Yu S, Tian P, Xiao J. Complete mitochondrial genome of Echinophylliaaspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning. Zookeys 2018; 793:1-14. [PMID: 30405308 PMCID: PMC6218560 DOI: 10.3897/zookeys.793.28977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022] Open
Abstract
Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phylogenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitogenome sequence of the stony coral Echinophylliaaspera (Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C). Bayesian and maximum likelihood phylogenetic analysis have been performed using PCGs, and the result shows that E.aspera clustered closely with Sclerophylliamaxima (Sheppard & Salm, 1988), both of which belong to Lobophylliidae, when compared with species belonging to Merulinidae and other scleractinian taxa used as outgroups. The complete mitogenome of E.aspera provides essential and important DNA molecular data for further phylogenetic and evolutionary analyses of corals.
Collapse
Affiliation(s)
- Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Shuangen Yu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| |
Collapse
|
16
|
Arrigoni R, Berumen ML, Stolarski J, Terraneo TI, Benzoni F. Uncovering hidden coral diversity: a new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics 2018; 35:301-328. [DOI: 10.1111/cla.12346] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Roberto Arrigoni
- Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
| | - Michael L. Berumen
- Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
| | - Jaroslaw Stolarski
- Institute of Paleobiology Polish Academy of Sciences Twarda 51/55 Warsaw PL‐00‐818 Poland
| | - Tullia I. Terraneo
- Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal 23955‐6900 Saudi Arabia
- College of Marine and Environmental Science James Cook University Townsville QLD 4811 Australia
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Piazza della Scienza 2 Milano 20126 Italy
- UMR ENTROPIE (IRD, Université de La Réunion, CNRS) Laboratoire d'excellence‐CORAIL Centre IRD de Nouméa 101 Promenade Roger Laroque, BP A5 Noumea Cedex 98848 New Caledonia
| |
Collapse
|
17
|
White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD. Shifting communities after-- typhoon damage on an upper mesophotic reef in Okinawa, Japan. PeerJ 2017; 5:e3573. [PMID: 28828236 PMCID: PMC5564387 DOI: 10.7717/peerj.3573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
Very few studies have been conducted on the long-term effects of typhoon damage on mesophotic coral reefs. This study investigates the long-term community dynamics of damage from Typhoon 17 (Jelawat) in 2012 on the coral community of the upper mesophotic Ryugu Reef in Okinawa, Japan. A shift from foliose to bushy coral morphologies between December 2012 and August 2015 was documented, especially on the area of the reef that was previously recorded to be poor in scleractinian genera diversity and dominated by foliose corals. Comparatively, an area with higher diversity of scleractinian coral genera was observed to be less affected by typhoon damage with more stable community structure due to less change in dominant coral morphologies. Despite some changes in the composition of dominant genera, the generally high coverage of the mesophotic coral community is facilitating the recovery of Ryugu Reef after typhoon damage.
Collapse
Affiliation(s)
- Kristine N White
- Department of Biology, The University of Tampa, Tampa, FL, United States of America
| | - David K Weinstein
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Taku Ohara
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Benthos Divers, Onna, Okinawa, Japan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Javier Montenegro
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - James D Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
18
|
Oku Y, Naruse T, Fukami H. Morpho-Molecular Evidence for Polymorphism in the Mushroom CoralCycloseris hexagonalis(Scleractinia: Fungiidae), with a New Phylogenetic Position and the Establishment of a New Genus for the Species. Zoolog Sci 2017; 34:242-251. [DOI: 10.2108/zs160065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yutaro Oku
- Department of Applied Biological Science, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Tohru Naruse
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hironobu Fukami
- Faculty of Agriculture, Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
19
|
Arrigoni R, Vacherie B, Benzoni F, Stefani F, Karsenti E, Jaillon O, Not F, Nunes F, Payri C, Wincker P, Barbe V. A new sequence data set of SSU rRNA gene for Scleractinia and its phylogenetic and ecological applications. Mol Ecol Resour 2017; 17:1054-1071. [DOI: 10.1111/1755-0998.12640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Roberto Arrigoni
- Red Sea Research Center; Division of Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
| | | | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 Milan 20126 Italy
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR); Via del Mulino 19 Brugherio I-20861 Italy
| | - Eric Karsenti
- Ecole Normale Supérieure; Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197; Paris F-75005 France
- Directors’ Research; European Molecular Biology Laboratory; Meyerhofstr. 1 Heidelberg 69117 Germany
| | - Olivier Jaillon
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | - Fabrice Not
- UPMC-CNRS; UMR 7144; Station Biologique de Roscoff; Place Georges Teissier Roscoff 29680 France
| | - Flavia Nunes
- Ifremer Centre Bretagne; DYNECO; Laboratoire d’Écologie Benthique Côtière (LEBCO); 29280 Plouzané France
| | - Claude Payri
- Institut de Recherche pour le Développement; UMR227 Coreus2; 101 Promenade Roger Laroque BP A5 Noumea Cedex 98848 New Caledonia
| | - Patrick Wincker
- CEA/DSV/IG/Genoscope; Evry Cedex France
- Université d'Evry; UMR 8030; Evry CP5706 France
| | | |
Collapse
|