1
|
Haapanen-Saaristo AM, Calhim S, Paatero I. High-resolution live imaging of tardigrade response to anoxia. Micron 2025; 196-197:103847. [PMID: 40367672 DOI: 10.1016/j.micron.2025.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Tardigrades are well-known for their ability to tolerate extreme environmental conditions such as heat, drought and lack of oxygen by undergoing cryptobiosis. The molecular responses to stress have been studied in detail, but the physiological and morphogenetic changes during cryptobiosis are less understood. We developed new live high-resolution fluorescence microscopy protocols to visualize the tardigrade response to lack of oxygen - anoxybiosis. High-resolution time-lapse imaging enabled analysis of cellular morphology and tracking of cell movements during anoxybiosis. These analyses revealed considerable changes in morphology, composition and movement of storage cells. Our observations and new imaging protocols can be used to study morphological and cellular response to stress in tardigrades.
Collapse
Affiliation(s)
| | - Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
2
|
Li C, Yang Z, Xu X, Meng L, Liu S, Yang D. Conserved and specific gene expression patterns in the embryonic development of tardigrades. Evol Dev 2024; 26:e12476. [PMID: 38654704 DOI: 10.1111/ede.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.
Collapse
Affiliation(s)
- Chaoran Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhixiang Yang
- School of Life Sciences, Hebei University, Baoding, China
| | - Xiaofang Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lingling Meng
- School of Life Sciences, Hebei University, Baoding, China
| | - Shihao Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
3
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
4
|
Wieczorkiewicz F, Sojka J, Poprawa I. Effect of paracetamol on the storage cells of Hypsibius exemplaris—ultrastructural analysis. Zool J Linn Soc 2024; 200:258-268. [DOI: 10.1093/zoolinnean/zlad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Tardigrades in their natural environment are exposed to various environmental toxicants, including non-steroidal anti-inflammatory drugs (NSAIDs) or antipyretics such as paracetamol. This drug can enter the animal’s body through the body wall or the digestive system with food and can affect the biology of organisms. In this paper, we report for the first time the effects of paracetamol on tardigrade storage cells. We analyzed the effects of short-term (7 days) and long-term (28 days) exposure of Hypsibius exemplaris storage cells to three paracetamol concentrations (0.2 µgxL−1, 230 µgxL−1, 1 mgxL−1). Our results showed that increasing paracetamol concentration and incubation time increases the number of damaged mitochondria in storage cells, and autophagy is activated and intensified. Moreover, the relocation of some organelles and cell deformation may indicate cytoskeleton damage.
Collapse
Affiliation(s)
- Filip Wieczorkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Julia Sojka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| |
Collapse
|
5
|
Poprawa I, Bartylak T, Kulpla A, Erdmann W, Roszkowska M, Chajec Ł, Kaczmarek Ł, Karachitos A, Kmita H. Verification of Hypsibius exemplaris Gąsiorek et al., 2018 (Eutardigrada; Hypsibiidae) application in anhydrobiosis research. PLoS One 2022; 17:e0261485. [PMID: 35303010 PMCID: PMC8932574 DOI: 10.1371/journal.pone.0261485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Anhydrobiosis is considered to be an adaptation of important applicative implications because it enables resistance to the lack of water. The phenomenon is still not well understood at molecular level. Thus, a good model invertebrate species for the research is required. The best known anhydrobiotic invertebrates are tardigrades (Tardigrada), considered to be toughest animals in the world. Hypsibius. exemplaris is one of the best studied tardigrade species, with its name "exemplaris" referring to the widespread use of the species as a laboratory model for various types of research. However, available data suggest that anhydrobiotic capability of the species may be overestimated. Therefore, we determined anhydrobiosis survival by Hys. exemplaris specimens using three different anhydrobiosis protocols. We also checked ultrastructure of storage cells within formed dormant structures (tuns) that has not been studied yet for Hys. exemplaris. These cells are known to support energetic requirements of anhydrobiosis. The obtained results indicate that Hys. exemplaris appears not to be a good model species for anhydrobiosis research.
Collapse
Affiliation(s)
- Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Tomasz Bartylak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Adam Kulpla
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego, Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Milena Roszkowska
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa, Katowice, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Andonis Karachitos
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego, Poznań, Poland
| |
Collapse
|
6
|
Tardigrada: An Emerging Animal Model to Study the Endoplasmic Reticulum Stress Response to Environmental Extremes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050872 DOI: 10.1007/978-3-030-67696-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Tardigrada (also known as "water bears") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.
Collapse
|
7
|
Jezierska M, Miernik A, Sojka J, Student S, Śliwińska MA, Gross V, Poprawa I. Oogenesis in the tardigrade Hypsibius exemplaris Gąsiorek, Stec, Morek & Michalczyk, 2018 (Eutardigrada, Hypsibiidae). Micron 2021; 150:103126. [PMID: 34399159 DOI: 10.1016/j.micron.2021.103126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Tardigrades are small, globally widespred invertebrates that need at least a thin layer of water to be active. There are gonochoric, hermaphroditic, and parthenogenetic species among them. The main aim of this study was to analyze the structure of the ovary, the structure of female germ cell clusters, and the course of oogenesis in the parthenogenetic species Hypsibius exemplaris, which in 2007 was recognized as a model organism. The material was analyzed using light and confocal microscopy as well as transmission and scanning electron microscopy. Histochemical and immunohistochemical methods were used. Our study showed that in the meroistic-polytrophic ovary of the examined species, branched germ cell clusters are formed in which one cell differentiates into an oocyte while the remaining cells become trophocytes. Vitellogenesis is of the mixed type: the first part of the yolk is synthesized by the oocyte (autosynthesis); the second part is synthesized by trophocytes and transported to the oocyte by cytoplasmic bridges; and the third part is synthesized outside the ovary (in storage cells) and transported to the oocyte by endocytosis. At the end of oogenesis, the trophocytes die by apoptosis. Parthenogenetic female of H. exemplaris lays from one to a dozen smooth eggs into exuviae.
Collapse
Affiliation(s)
- Marta Jezierska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland; Department of Pathomorphology and Molecular Diagnostics, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Aleksandra Miernik
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Julia Sojka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Vladimir Gross
- University of Kassel, Institute of Biology, Department of Zoology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
8
|
Rost-Roszkowska M, Janelt K, Poprawa I. Ultrastructure of the midgut epithelium in three species of Macrobiotidae (Tardigrada: Eutardigrada: Parachela). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Three species of Macrobiotidae, Macrobiotus polonicus, Macrobiotus diversus and Macrobiotus pallarii, were selected for analysis of the fine structure of the midgut epithelium. They are gonochoric and carnivorous species that live in wet terrestrial and freshwater environments. The ultrastructure of the midgut epithelium of the investigated Macrobiotidae species was analysed in both males and females. Their digestive system is composed of fore- and hindguts that are covered by a cuticle, and the middle region, termed the midgut. It is lined with a simple epithelium that is formed by digestive cells that have a distinct brush border. Crescent-shaped cells that form an anterior ring in the border between the fore- and midgut were detected. The ultrastructure of the intestinal epithelium of the examined species differs slightly depending on sex. The digestive cells of the posterior segment of the intestine contain numerous lipid droplets, which are the reserve material. We concluded that the digestive cells of the Macrobiotidae midgut are responsible for its intracellular digestion owing to endocytosis. They also participate in the extracellular digestion owing to merocrine secretion (exocytosis). However, the midgut is not the main organ that accumulates reserve material. Additionally, the midgut epithelium does not participate in oogenesis.
Collapse
Affiliation(s)
- M Rost-Roszkowska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Katowice, Poland
| | - K Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Katowice, Poland
| | - I Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Katowice, Poland
| |
Collapse
|
9
|
Janelt K, Jezierska M, Poprawa I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 50:53-63. [PMID: 31004762 DOI: 10.1016/j.asd.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, we describe the female reproductive system organization and oogenesis in the eutardigrade Thulinius ruffoi. Light, confocal and electron microscopy was used in this study. During oogenesis, three phases can be distinguished: previtellogenesis, vitellogenesis, and choriogenesis. Germ-line cells form cell clusters in which the cells are connected by intercellular (cytoplasmic) bridges. These structures are crucial for delivering the yolk materials, macromolecules, ribosomes, and organelles to the developing oocyte. Vitellogenesis is of a mixed type. Autosynthesis and heterosynthesis of the yolk material occur. Yolk precursors that have been synthesized outside the ovary are delivered to the oocyte via endocytosis. We also present data on cortical granules, and moreover, we describe the cortical reaction in tardigrades, possibly for the first time.
Collapse
Affiliation(s)
- Kamil Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Jezierska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
10
|
|
11
|
Gross V, Treffkorn S, Reichelt J, Epple L, Lüter C, Mayer G. Miniaturization of tardigrades (water bears): Morphological and genomic perspectives. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 48:12-19. [PMID: 30447338 DOI: 10.1016/j.asd.2018.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Tardigrades form a monophyletic group of microscopic ecdysozoans best known for surviving extreme environmental conditions. Due to their key phylogenetic position as a subgroup of the Panarthropoda, understanding tardigrade biology is important for comparative studies with related groups like Arthropoda. Panarthropods - and Ecdysozoa as a whole - likely evolved from macroscopic ancestors, with several taxa becoming secondarily miniaturized. Morphological and genomic evidence likewise points to a miniaturized tardigrade ancestor. The five-segmented tardigrade body typically measures less than 1 mm in length and consists of only about 1000 cells. Most organs comprise a relatively small number of cells, with the highest proportion belonging to the central nervous system, while muscles are reduced to a single cell each. Similarly, fully sequenced genomes of three tardigrade species - together with Hox gene expression data - point to extensive modifications, rearrangements, and major losses of genes and even a large body region. Parallels are evident with related ecdysozoans that may have also undergone genomic reductions, such as the nematode Caenorhabditis elegans. We interpret these data together as evidence of miniaturization in the tardigrade lineage, while cautioning that the effects of miniaturization may manifest in different ways depending on the organ or organ system under examination.
Collapse
Affiliation(s)
- Vladimir Gross
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany
| | - Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany
| | - Julian Reichelt
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany
| | - Lisa Epple
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, D-10115, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, D-34132, Germany.
| |
Collapse
|
12
|
Jönsson KI, Holm I, Tassidis H. Cell Biology of the Tardigrades: Current Knowledge and Perspectives. Results Probl Cell Differ 2019; 68:231-249. [PMID: 31598859 DOI: 10.1007/978-3-030-23459-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The invertebrate phylum Tardigrada has received much attention for containing species adapted to the most challenging environmental conditions where an ability to survive complete desiccation or freezing in a cryptobiotic state is necessary for persistence. Although research on tardigrades has a long history, the last decade has seen a dramatic increase in molecular biological ("omics") studies, most of them with the aim to reveal the biochemical mechanisms behind desiccation tolerance of tardigrades. Several other aspects of tardigrade cell biology have been studied, and we review some of them, including karyology, embryology, the role of storage cells, and the question of whether tardigrades are eutelic animals. We also review some of the theories about how anhydrobiotic organisms are able to maintain cell integrity under dry conditions, and our current knowledge on the role of vitrification and DNA protection and repair. Many aspects of tardigrade stress tolerance have relevance for human medicine, and the first transfers of tardigrade stress genes to human cells have now appeared. We expect this field to develop rapidly in the coming years, as more genomic information becomes available. However, many basic cell biological aspects remain to be investigated, such as immunology, cell cycle kinetics, cell metabolism, and culturing of tardigrade cells. Such development will be necessary to allow tardigrades to move from a nonmodel organism position to a true model organism with interesting associations with the current models C. elegans and D. melanogaster.
Collapse
Affiliation(s)
- K Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden.
| | - Ingvar Holm
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Helena Tassidis
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| |
Collapse
|
13
|
Gross V, Müller M, Hehn L, Ferstl S, Allner S, Dierolf M, Achterhold K, Mayer G, Pfeiffer F. X-ray imaging of a water bear offers a new look at tardigrade internal anatomy. ZOOLOGICAL LETTERS 2019; 5:14. [PMID: 31110777 PMCID: PMC6511223 DOI: 10.1186/s40851-019-0130-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Tardigrades (water bears) are microscopic invertebrates of which the anatomy has been well studied using traditional techniques, but a comprehensive three-dimensional reconstruction has never been performed. In order to close this gap, we employed X-ray computed tomography (CT), a technique that is becoming increasingly popular in zoology for producing high-resolution, three-dimensional (3D) scans of whole specimens. While CT has long been used to scan larger samples, its use in some microscopic animals can be problematic, as they are often too small for conventional CT yet too large for high-resolution, optics-based soft X-ray microscopy. This size gap continues to be narrowed with advancements in technology, with high-resolution imaging now being possible using both large synchrotron devices and, more recently, laboratory-based instruments. RESULTS Here we use a recently developed prototype lab-based nano-computed tomography device to image a 152 μm-long tardigrade at high resolution (200-270 nm pixel size). The resulting dataset allowed us to visualize the anatomy of the tardigrade in 3D and analyze the spatial relationships of the internal structures. Segmentation of the major structures of the body enabled the direct measurement of their respective volumes. Furthermore, we segmented every storage cell individually and quantified their volume distribution. We compare our measurements to those from published studies in which other techniques were used. CONCLUSIONS The data presented herein demonstrate the utility of CT imaging as a powerful supplementary tool for studies of tardigrade anatomy, especially for quantitative volume measurements. This nanoCT study represents the smallest complete animal ever imaged using CT, and offers new 3D insights into the spatial relationships of the internal organs of water bears.
Collapse
Affiliation(s)
- Vladimir Gross
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Mark Müller
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Lorenz Hehn
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Simone Ferstl
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Sebastian Allner
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Martin Dierolf
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Klaus Achterhold
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Franz Pfeiffer
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
14
|
Abstract
Even though tardigrades have been known since 1772, their phylogenetic position is still controversial. Tardigrades are regarded as either the sister group of arthropods, onychophorans, or onychophorans plus arthropods. Furthermore, the knowledge about their gametogenesis, especially oogenesis, is still poor and needs further analysis. The process of oogenesis has been studied solely for several eutardigradan species. Moreover, the spatial organization of the female germ-line clusters has been described for three species only. Meroistic ovaries characterize all analyzed species. In species of the Parachela, one cell per germ-cell cluster differentiates into the oocyte, while the remaining cells become the trophocytes. In Apochela several cells in the cluster differentiate into oocytes. Vitellogenesis is of a mixed type. The eggs are covered with the egg capsule that is composed of two shells: the thin vitelline envelope that adheres to the oolemma and the thick three-layered chorion. Chorion is formed as a first followed by vitelline envelope. Several features related to the oogenesis and structure of the ovary confirm the hypothesis that tardigrades are the sister group rather for arthropods than for onychophorans.
Collapse
Affiliation(s)
- Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
15
|
Goldstein B. The Emergence of the Tardigrade Hypsibius exemplaris as a Model System. Cold Spring Harb Protoc 2018; 2018:2018/11/pdb.emo102301. [PMID: 30385668 DOI: 10.1101/pdb.emo102301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The success of scientists in revealing biological mechanisms has depended in large part on choosing tractable model systems. In 1997, molecular phylogenetics revealed that two of biology's most tractable models-Caenorhabditis elegans and Drosophila-are much more closely related to each other than had been thought previously. I began to explore whether any of the little-studied members of this branch of the tree of life might serve as a new model for comparative biology that could make use of the rich and ongoing sources of information flowing from C. elegans and Drosophila research. Tardigrades, also known as water bears, make up a phylum of microscopic animals. The tardigrade Hypsibius exemplaris (recently disambiguated from a closely related species, Hypsibius dujardini) can be maintained in laboratories and has a generation time of <2 wk at room temperature. Stocks of animals can be stored frozen and revived. The animals and their embryos are optically clear, and embryos are laid in groups, with each synchronous clutch of embryos laid in a clear molt. We have developed techniques for laboratory study of this system, including methods for microinjection of animals, immunolocalization, in situ hybridization, RNA interference, transcriptomics, and methods for identifying proteins that mediate tolerance to extreme environments. Here, I review the development of this animal as an emerging model system, as well as recent molecular studies aimed at understanding the evolution of developmental mechanisms that underpin the evolution of animal form and at understanding how biological materials can survive extreme environments.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
16
|
Czerneková M, Janelt K, Student S, Jönsson KI, Poprawa I. A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress. PLoS One 2018; 13:e0201430. [PMID: 30096140 PMCID: PMC6086413 DOI: 10.1371/journal.pone.0201430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 02/03/2023] Open
Abstract
Tardigrades represent an invertebrate phylum with no circulatory or respiratory system. Their body cavity is filled with free storage cells of the coelomocyte-type, which are responsible for important physiological functions. We report a study comparing the ultrastructure of storage cells in anhydrobiotic and hydrated specimens of the eutardigrade Richtersius coronifer. We also analysed the effect of temperature stress on storage cell structure. Firstly, we verified two types of ultrastructurally different storage cells, which differ in cellular organelle complexity, amount and content of reserve material and connection to oogenetic stage. Type I cells were found to differ ultrastructurally depending on the oogenetic stage of the animal. The main function of these cells is energy storage. Storage cells of Type I were also observed in the single male that was found among the analysed specimens. The second cell type, Type II, found only in females, represents young undifferentiated cells, possibly stem cells. The two types of cells also differ with respect to the presence of nucleolar vacuoles, which are related to oogenetic stages and to changes in nucleolic activity during oogenesis. Secondly, this study revealed that storage cells are not ultrastructurally affected by six months of desiccation or by heating following this desiccation period. However, heating of the desiccated animals (tuns) tended to reduce animal survival, indicating that long-term desiccation makes these animals more vulnerable to heat stress. We confirmed the degradative pathways during the rehydration process after desiccation and heat stress. Our study is the first to document two ultrastructurally different types of storage cells in tardigrades and reveals new perspectives for further studies of tardigrade storage cells.
Collapse
Affiliation(s)
- Michaela Czerneková
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamil Janelt
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland
| | - K. Ingemar Jönsson
- Department of Environmental Science and Bioscience, Kristianstad University, Kristianstad, Sweden
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
17
|
Møbjerg N, Jørgensen A, Kristensen RM, Neves RC. Morphology and Functional Anatomy. WATER BEARS: THE BIOLOGY OF TARDIGRADES 2018. [DOI: 10.1007/978-3-319-95702-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Czerneková M, Jönsson KI, Chajec L, Student S, Poprawa I. The structure of the desiccated Richtersius coronifer (Richters, 1903). PROTOPLASMA 2017; 254:1367-1377. [PMID: 27677802 DOI: 10.1007/s00709-016-1027-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Tun formation is an essential morphological adaptation for entering the anhydrobiotic state in tardigrades, but its internal structure has rarely been investigated. We present the structure and ultrastructure of organs and cells in desiccated Richtersius coronifer by transmission and scanning electron microscopy, confocal microscopy, and histochemical methods. A 3D reconstruction of the body organization of the tun stage is also presented. The tun formation during anhydrobiosis of tardigrades is a process of anterior-posterior body contraction, which relocates some organs such as the pharyngeal bulb. The cuticle is composed of epicuticle, intracuticle and procuticle; flocculent coat; and trilaminate layer. Moulting does not seem to restrict the tun formation, as evidenced from tardigrade tuns that were in the process of moulting. The storage cells of desiccated specimens filled up the free inner space and surrounded internal organs, such as the ovary and digestive system, which were contracted. All cells (epidermal cells, storage cells, ovary cells, cells of the digestive system) underwent shrinkage, and their cytoplasm was electron dense. Lipids and polysaccharides dominated among reserve material of storage cells, while the amount of protein was small. The basic morphology of specific cell types and organelles did not differ between active and anhydrobiotic R. coronifer.
Collapse
Affiliation(s)
- Michaela Czerneková
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden.
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - K Ingemar Jönsson
- School of Education and Environment, Kristianstad University, Kristianstad, Sweden
| | - Lukasz Chajec
- Department of Animal Histology and Embryology, Silesian University, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, Silesian University, Katowice, Poland
| |
Collapse
|