1
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
2
|
Cunha AF, Collins AG, Marques AC. When morphometry meets taxonomy: morphological variation and species boundaries in Proboscoida (Cnidaria: Hydrozoa). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlz166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Species delimitation in marine taxa is often problematic given large intraspecific variation. Based on extensive, recently published genetic sampling from specimens of the hydrozoan families Campanulariidae, Clytiidae and Obeliidae, we evaluate morphological variation in this group, correlating morphometric and phylogenetic patterns for species delimitation. Several species of Campanulariidae are confidently delimited based on differences in size (e.g. Bonneviella species, Tulpa tulipifera and Rhizocaulus verticillatus), while others are re-identified and corroborated based on differences in perisarc thickness (e.g. Silicularia rosea, Orthopyxis and Campanularia species). In Clytiidae, the length and diameter of hydrothecae, height of hydrothecal cusps and perisarc thickness delimit the species Clytia linearis, C. elsaeoswaldae and C. noliformis from others. However, few characters reliably differentiate the clades associated with the nominal species C. gracilis and C. hemisphaerica. In Obeliidae, Obelia geniculata is distinctive in its higher perisarc thickness, and corroborated as a widely distributed species. Obelia longissima and clades refered to O. dichotoma are subtly distinguished, showing a few differences in size and branching of colonies. The taxonomic implications of these results are discussed. With a few exceptions, species can be delimited based on morphometric patterns, once morphological variation is compared.
Collapse
Affiliation(s)
- Amanda F Cunha
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Allen G Collins
- National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
| | - Antonio C Marques
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Moura CJ, Lessios H, Cortés J, Nizinski MS, Reed J, Santos RS, Collins AG. Hundreds of genetic barcodes of the species-rich hydroid superfamily Plumularioidea (Cnidaria, Medusozoa) provide a guide toward more reliable taxonomy. Sci Rep 2018; 8:17986. [PMID: 30573739 PMCID: PMC6301992 DOI: 10.1038/s41598-018-35528-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Marine hydroids are important benthic components of shallow and deep waters worldwide, but their taxonomy is controversial because diagnostic morphological characters to categorize taxa are limited. Their genetic relationships are also little investigated. We tested taxonomic hypotheses within the highly speciose superfamily Plumularioidea by integrating a classical morphological approach with DNA barcoding of the 16S and COI mitochondrial markers for 659 and 196 specimens of Plumularioidea, respectively. Adding Genbank sequences, we inferred systematic relationships among 1,114 plumularioids, corresponding to 123 nominal species and 17 novel morphospecies in five families of Plumularioidea. We found considerable inconsistencies in the systematics of nominal families, genera and species. The families Kirchenpaueriidae and Plumulariidae were polyphyletic and the Halopterididae paraphyletic. Most genera of Plumularioidea are not monophyletic. Species diversity is considerably underestimated. Within our study, at least 10% of the morphologically-distinctive morphospecies are undescribed, and about 40% of the overall species richness is represented by cryptic species. Convergent evolution and morphological plasticity therefore blur systematic relationships. Additionally, cryptic taxa occur frequently in sympatry or parapatry, complicating correspondence with type material of described species. Sometimes conspecificity of different morphotypes was found. The taxonomy of hydroids requires continued comprehensive revision.
Collapse
Affiliation(s)
- Carlos J Moura
- MARE-IMAR-OKEANOS, Rua Prof. Dr Frederico Machado, 4, University of the Azores, Horta, 9901-862, Portugal. .,Smithsonian Tropical Research Institute, Balboa, 0843-03092, Panamá, USA. .,National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA. .,CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Harilaos Lessios
- Smithsonian Tropical Research Institute, Balboa, 0843-03092, Panamá, USA
| | - Jorge Cortés
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, 11501-2060, San José, Costa Rica
| | - Martha S Nizinski
- National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA
| | - John Reed
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, 34946, USA
| | - Ricardo S Santos
- MARE-IMAR-OKEANOS, Rua Prof. Dr Frederico Machado, 4, University of the Azores, Horta, 9901-862, Portugal
| | - Allen G Collins
- National Systematics Laboratory, NOAA's National Marine Fisheries Service, Smithsonian National Museum of Natural History, Washington, DC, 20560, USA
| |
Collapse
|
4
|
Di Camillo CG, Gravili C, De Vito D, Pica D, Piraino S, Puce S, Cerrano C. The importance of applying Standardised Integrative Taxonomy when describing marine benthic organisms and collecting ecological data. INVERTEBR SYST 2018. [DOI: 10.1071/is17067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The decline of morphologically based taxonomy is mainly linked to increasing species redundancy, which probably contributed to a worldwide disinterest in taxonomy, and to a reduction of funding for systematic biology and for expertise training. The present trend in the study of biodiversity is integrated taxonomy, which merges morphological and molecular approaches. At the same time, in many cases new molecular techniques have eclipsed the morphological approach. The application of Standardised Integrative Taxonomy, i.e. a rigorous, common method of description based on the integration between ecological and morphological characteristics, may increase the precision, accessibility, exploitability and longevity of the collected data, and favour the renaissance of taxonomy by new investments in biodiversity exploration.
Collapse
|
5
|
Postaire B, Gélin P, Bruggemann JH, Pratlong M, Magalon H. Population differentiation or species formation across the Indian and the Pacific Oceans? An example from the brooding marine hydrozoan Macrorhynchia phoenicea. Ecol Evol 2017; 7:8170-8186. [PMID: 29075441 PMCID: PMC5648676 DOI: 10.1002/ece3.3236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Assessing population connectivity is necessary to construct effective marine protected areas. This connectivity depends, among other parameters, inherently on species dispersal capacities. Isolation by distance (IBD) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal abilities. This study reports the genetic structuring in the tropical hydrozoan Macrorhynchia phoenicea α (sensu Postaire et al., 2016a), a brooding species, from 30 sampling sites in the Western Indian Ocean and the Tropical Southwestern Pacific, using 15 microsatellite loci. At the local scale, genet dispersal relied on asexual propagation at short distance, which was not found at larger scales. Considering one representative per clone, significant positive FIS values (from −0.327*** to 0.411***) were found within almost all sites. Gene flow was extremely low at all spatial scales, among sites within islands (<10 km distance) and among islands (100 to >11,000 km distance), with significant pairwise FST values (from 0.035*** to 0.645***). A general pattern of IBD was found at the Indo‐Pacific scale, but also within ecoregions in the Western Indian Ocean province. Clustering and network analyses identified each island as a potential independent population, while analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. As shown by this species, a brooding life cycle might be corollary of the high population differentiation found in some coastal marine species, thwarting regular dispersal at distances more than a few kilometers and probably leading to high cryptic diversity, each island housing independent evolutionary lineages.
Collapse
Affiliation(s)
- Bautisse Postaire
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France.,IMBE UMR 7263 Aix Marseille Université/CNRS/IRD/Avignon Université Marseille France
| | - Pauline Gélin
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| | - J Henrich Bruggemann
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| | - Marine Pratlong
- IMBE UMR 7263 Aix Marseille Université/CNRS/IRD/Avignon Université Marseille France.,I2M Equipe Evolution Biologique et Modélisation Aix Marseille Université/CNRS/Centrale Marseille Marseille France
| | - Hélène Magalon
- UMR ENTROPIE Université de La Réunion/CNRS/IRD Université de La Réunion Saint Denis France.,Laboratoire d'Excellence CORAIL Perpignan France
| |
Collapse
|
6
|
Postaire B, Gélin P, Bruggemann JH, Magalon H. One species for one island? Unexpected diversity and weak connectivity in a widely distributed tropical hydrozoan. Heredity (Edinb) 2017; 118:385-394. [PMID: 28177325 DOI: 10.1038/hdy.2016.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/03/2016] [Accepted: 11/05/2016] [Indexed: 11/09/2022] Open
Abstract
Isolation by distance (IBD) is one of the main modes of differentiation in marine species, above all in species presenting low dispersal capacities. This study reports the genetic structuring in the tropical hydrozoan Lytocarpia brevirostris α (sensu Postaire et al, 2016b), a brooding species, from 13 populations in the Western Indian Ocean (WIO) and one from New Caledonia (Tropical Southwestern Pacific). At the local scale, populations rely on asexual propagation at short distance, which was not found at larger scales; identical genotypes were restricted to single populations. After the removal of repeated genotypes, all populations presented significant positive FIS values (between 0.094*** and 0.335***). Gene flow was extremely low at all spatial scales, between sites within islands (<10 km distance) and among islands (100 to>11 000 km distance), with significant pairwise FST values (between 0.012*** and 0.560***). A general pattern of IBD was found at the Indo-Pacific scale, but also within sampled ecoregions of the WIO province. Clustering analyses identified each sampled island as an independent population, whereas analysis of molecular variance indicated that population genetic differentiation was significant at small (within island) and intermediate (among islands within province) spatial scales. The high population differentiation might reflect the life cycle of this brooding hydrozoan, possibly preventing regular dispersal at distances more than a few kilometres and probably leading to high cryptic diversity, each island housing an independent evolutionary lineage.
Collapse
Affiliation(s)
- B Postaire
- Université de La Réunion, UMR ENTROPIE Université de La Réunion-CNRS-IRD, Saint Denis, France.,Laboratoire d'Excellence CORAIL, Perpignan, France
| | - P Gélin
- Université de La Réunion, UMR ENTROPIE Université de La Réunion-CNRS-IRD, Saint Denis, France.,Laboratoire d'Excellence CORAIL, Perpignan, France
| | - J H Bruggemann
- Université de La Réunion, UMR ENTROPIE Université de La Réunion-CNRS-IRD, Saint Denis, France.,Laboratoire d'Excellence CORAIL, Perpignan, France
| | - H Magalon
- Université de La Réunion, UMR ENTROPIE Université de La Réunion-CNRS-IRD, Saint Denis, France.,Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
7
|
Postaire B, Magalon H, Bourmaud CAF, Bruggemann JH. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa). Mol Phylogenet Evol 2016; 105:36-49. [DOI: 10.1016/j.ympev.2016.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
|